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Context

Larger and larger scale hybrid machines

; Different programming approaches (e.g., in linear algebra applications)
“Rigid, hand tuned”

SuperLU

Task-based and Dynamic

MUMPS
Analysis and Comparison of Two Distributed Memory Sparse Solvers

Amestoy, Du�, L'excellent, Li. ACM Trans. on Math. Software, Vol. 27, No. 4, 2001.

Deep need for performance prediction through simulation

Save experimental time, baseline comparison, reproducibility, extrapolation
Rigid (deterministic control flow) applications ; trace replay. . .
. . . but for dynamic applications, the scheduling has to be emulated
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http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf
http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf


Close Related Work

Sparse linear algebra (LBNL + UCSD)

IBM Power 5 Cray TX4

Performance Modeling Tools for Parallel Sparse Linear Algebra Computations. Cicotti, Li, Baden.
ParCo 2009Distributed setting (SuperLU/MPI), ad hoc model of SuperLU

Fine/Coarse grain simulation (memory, cpu, comm), linear interpolations
Error difficult to control; Difficult evolution (no recent result AFAIK)

Dense linear algebra (UTK)

Parallel simulation of superscalar scheduling, Haugen, Kurzak, YarKhan, Dongarra. ICPP 2014.

Ad hoc simulator, works for OmpSs, StarPU, and QUARK
Good results for a homogeneous machine with no communication
Quite di�cult to evolve beyond this study (IMHO)
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Real life Simulation
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StarPU and SimGrid

StarPU (Inria Bordeaux)

Dynamic runtime for hybrid architectures (CPU, GPU, MPI)
Opportunistic scheduling of a task graph guided by resource performance
models
Features both dense and sparse applications. FMM ongoing.

SimGrid (Inria Grenoble, Lyon, Nancy . . . )

Scalable Simulation framework for distributed systems
Sound fluid network models accounting for heterogeneity and contention
Modeling with threads rather than only trace replay ; ability to simulate
dynamic applications
Portable, open source and easily extendable

StarPU was ported on top of SimGrid by S. Thibault in 1 day:
Replace synchronization and thread creation by SimGrid’s ones
Very crude platform model

The same approach should be applicable to any task-based runtime
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Envisioned Work�ow: StarPU+SimGrid

StarPU

Performance Pro�le

Calibration

Run once!
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Envisioned Work�ow: StarPU+SimGrid

StarPU

SimGrid

Simulation

Quickly Simulate Many Times

StarPU

Performance Pro�le

Calibration

Run once!
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Implementation Principles

Emulation executing real applications in a synthetic environment, generally
slowing down the whole code

Simulation use a performance model to determine how much time a
process should wait

StarPU applications and runtime are emulated (real scheduler and
dynamic decision guided on StarPU calibration)

All operations related to thread synchronization, actual computations,
memory allocation and data transfer are simulated (need for a good
kernel and communication model) and faked

Actual computation results are irrelevant and have no impact on the
control flow. Only time matters
In SimGrid, all threads run in mutual exclusion (polling)

The control part of StarPU is modi�ed to dynamically inject
computation and communication tasks into the simulator
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Dense Linear Algebra Applications

Started with regular dense kernels and a �xed tile size
Used two di�erent matrix decomposition algorithms:

1 Cholesky
2 LU

Used a wide diversity of machines

Name Processor #Cores Memory GPUs

hannibal X5550 2× 4 2× 24GB 3×QuadroFX5800
attila X5650 2× 6 2× 24GB 3×TeslaC2050
mirage X5650 2× 6 2× 18GB 3×TeslaM2070
conan E5-2650 2× 8 2× 32GB 3×TeslaM2075
frogkepler E5-2670 2× 8 2× 16GB 2×K20
pilipili2 E5-2630 2× 6 2× 32GB 2×K40
idgraf X5650 2× 6 2× 36GB 8×TeslaC2050
idchire E5-4640 24× 8 24× 31GB /

Table: Machines used for the dense linear algebra experiments.
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The path to reliable predictions

Conan Cholesky Attila LU
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Getting excellent results (e.g., Cholesky on Conan) sometimes do not
requires much e�orts

But modeling communication heterogeneity, contention, memory
operation (and even sometimes hardware/driver peculiarity) is essential

Try to be as exhaustive as possible. . .
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Overview of Simulation Accuracy

hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 mirage: 3 TeslaM2070
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Checking predictive capability of the simulation

conan: 3 TeslaM2075 frogkepler: 2 K20 pilipili2: 2 K40
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Beyond Simple Graphs

Comparing Di�erent Schedulers

Cholesky on Attila

DMDA DMDAR DMDAS
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Investigating Details
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Simulating Sparse Solvers

qrm_starpu

QR MUMPS multi-frontal factorization on top of StarPU

Tree parallelism: nodes in
separate branches can be treated
independently

Node parallelism: large nodes
can be treated by multiple
process

No GPU support (ongoing) in this study, only multi-core

Porting qrm_starpu on top of SimGrid

Changing main for the subroutine

Changing compilation process

Careful kernel modeling as matrix dimension keeps changing
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Example for Modeling Kernels: GEQRT

GEQRT(Panel) duration:

TGEQRT = a+ 2b(NB2 ×MB)− 2c(NB3 × BK ) +
4d

3
NB

3

We can do a linear regression based on ad hoc calibration

GEQRT Duration

NB3 1.50× 10−5 (1.30× 10−5, 1.70× 10−5) ∗∗∗

NB2 ∗MB 5.49× 10−7 (5.46× 10−7, 5.51× 10−7) ∗∗∗

NB3 ∗ BK −5.52× 10−7 (−5.57× 10−7, −5.48× 10−7) ∗∗∗

Constant −2.49× 101 (−2.83× 101, −2.14× 101) ∗∗∗

Observations 493
R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Comparing Kernel Duration Distributions

Do_subtree INIT GEQRT GEMQRT ASM

1. #Flops #Zeros NB NB #Coe�
2. #Nodes #Assemble MB MB /
3. / / BK BK /

R2 0.99 0.99 0.99 0.99 0.86

Native, Do_subtree Native, INIT Native, GEQRT Native, GEMQRT Native, ASM Native, CLEAN

SimGrid, Do_subtree SimGrid, INIT SimGrid, GEQRT SimGrid, GEMQRT SimGrid, ASM SimGrid, CLEAN
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Overview of Simulation Accuracy
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Results in a nutshell

Most of the time, simulation is
slightly optimistic

With bigger and architecturally
more complex machines, error
increases
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Studying Memory Consumption

Minimizing memory footprint is very important for such applications
Remember scheduling is dynamic so consecutive Native experiments
have di�erent output

Experiment number 1

Experiment number 2

Experiment number 3
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Extrapolating to Larger Machines

Predicting performance in idealized context
Studying the parallelization limits of the problem

Extrapolation
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Achievements

Works great for hybrid setups with both dense and sparse linear
algebra StarPU applications

The simulator is used to investigate scheduling aspects that could not
be studied with a classical approach

Anyone can check and try to reproduce this work

http://starpu-simgrid.gforge.inria.fr/

This approach allows to:
1 Quickly and accurately evaluate the impact of various

scheduling/application parameters:
QR TF17 on riri (40 cores) RAM Time
RL 58.0GB 157.0s
Simulation 1.5GB 57.0s

2 Test different scheduling alternatives
3 Evaluate memory footprint
4 Debug applications on a commodity laptop in a reproducible way
5 Detect problems with real experiments using reliable comparison
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There Are Situations Where We're Completely Wrong

Some are due to bad behavior of the application/runtime in RL

Some are due to a bad modeling of the platform (e.g., large NUMA)
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Ongoing Work and Perspectives

Ongoing Work

Simulate StarPU-MPI applications

Simulate advanced implementations of qrm_starpu using:

2D partitioning and memory aware scheduling
GPUs for executing tasks

Modeling and Simulation Perspectives

Large NUMA architectures (with StarPU-MPI?)

Kernel interferences (cache/memory contention)

Predicting performance of next generation machines

Analysis and Visualization Perspectives

Trace comparison

Applicative/spatial/temporal aggregation

Building on application models
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