Performance Prediction of Task-Based Runtimes

1. A Legrand J.-F. Méhaut L. Stanisic B. Videau
2: E. Agullo A. Guermouche S. Thibault
3: A. Buttari F. Lopez

1: CNRS/Inria/University of Grenoble, France
2: University of Bordeaux/Inria, France

3: CNRS/University Paul Sabatier, Toulouse, France

JLESC, Barcelona
June 29, 2015

1/19



Context

Larger and larger scale hybrid machines

~» Different programming approaches (e.g., in linear algebra applications)
“Rigid, hand tuned" Task- based and Dynamlc

SuperLU MUMPS
Analysis and Comparison of Two Distributed Memory Sparse Solvers

Amestoy, Duff, L'excellent, Li. ACM Trans. on Math. Software, Vol. 27, No. 4, 2001.
W

Deep need for performance prediction through simulation

@ Save experimental time, baseline comparison, reproducibility, extrapolation
@ Rigid (deterministic control flow) applications ~ trace replay. ..
@ ... but for dynamic applications, the scheduling has to be emulated



http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf
http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf

Close Related

Sparse linear algebra (LBNL + UCSD)
IBM Power 5 Cray TX4

1 8 16 32 64 il 8 16 32 64
Processor: Processors

Performance Modeling Toolssfor Parallel Sparse Linear Algebra Computations. Cicotti, Li, Baden.
@ Distributed setting (SuperLU/MPI), ad hoc model of SuperLU  ParCo 2009
@ Fine/Coarse grain simulation (memory, cpu, comm), linear interpolations
@ Error difficult to control; Difficult evolution (no recent result AFAIK)

Dense linear algebra (UTK)

Parallel simulation of superscalar scheduling, Haugen, Kurzak, YarKhan, Dongarra. ICPP 2014.
@ Ad hoc simulator, works for OmpSs, StarPU, and QUARK
@ Good results for a homogeneous machine with no communication
@ Quite difficult to evolve beyond this study (IMHO)



http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf

Close Related Work

Sparse linear algebra (LBNL + UCSD)

Performance Modeling Tools for Parallel Sparse Linear Algebra Computations. Cicotti, Li, Baden.
@ Distributed setting (SuperLU/MPI), ad hoc model of SuperLU  ParCo 2009
@ Fine/Coarse grain simulation (memory, cpu, comm), linear interpolations

@ Error difficult to control; Difficult evolution (no recent result AFAIK)
v

Dense linear algebra (UTK)
Real life . Simulation

llflu

QR factorization, 3960 x 3960, AMD Opteron 6180SE (4 x 12 Cores)

Parallel simulation of superscalar scheduling, Haugen, Kurzak, YarKhan, Dongarra. ICPP 2014.

@ Ad hoc simulator, works for OmpSs, StarPU, and QUARK
@ Good results for a homogeneous machine with no communication
@ Quite difficult to evolve beyond this study (IMHO)



http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf

StarPU and SimGrid

StarPU (Inria Bordeaux)

@ Dynamic runtime for hybrid architectures (CPU, GPU, MPI)

@ Opportunistic scheduling of a task graph guided by resource performance
models

@ Features both dense and sparse applications. FMM ongoing.

SimGrid (Inria Grenoble, Lyon, Nancy ...)

@ Scalable Simulation framework for distributed systems

@ Sound fluid network models accounting for heterogeneity and contention

@ Modeling with threads rather than only trace replay ~ ability to simulate
dynamic applications

@ Portable, open source and easily extendable

StarPU was ported on top of SimGrid by S. Thibault in 1 day:
@ Replace synchronization and thread creation by SimGrid's ones
@ Very crude platform model

The same approach should be applicable to any task-based runtime .



Envisioned Workflow: StarPU+SimGrid

Calibration

Performance Profile

Run once!
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Envisioned Workflow: StarPU+SimGrid
Calibration

Simulation

StarPU

StarPU
t SimGrid —w
Performance Profile ‘\/ {1 [ Il
Run once!

Quickly Simulate Many Times
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Implementation Principles

Emulation executing real applications in a synthetic environment, generally
slowing down the whole code

Simulation use a performance model to determine how much time a
process should wait

e StarPU applications and runtime are emulated (real scheduler and
dynamic decision guided on StarPU calibration)
@ All operations related to thread synchronization, actual computations,

memory allocation and data transfer are simulated (need for a good
kernel and communication model) and faked

e Actual computation results are irrelevant and have no impact on the
control flow. Only time matters

e In SimGrid, all threads run in mutual exclusion (peling)

@ The control part of StarPU is modified to dynamically inject
computation and communication tasks into the simulator
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@ Evaluating Dense Linear Algebra Applications
© Evaluating Sparse Linear Algebra Applications

© Conclusion and Perspectives



@ Evaluating Dense Linear Algebra Applications



Dense Linear Algebra Applications

e Started with regular dense kernels and a fixed tile size
@ Used two different matrix decomposition algorithms:

@ Cholesky
Q LU
e Used a wide diversity of machines

Name Processor #Cores  Memory GPUs
hannibal X5550 2x4 2x24GB  3xQuadroFX5800
attila X5650 2x6 2x24GB 3x TeslaC2050
mirage X5650 2x6 2x18GB 3x TeslaM2070
conan E5-2650 2x8 2x32GB 3x TeslaM2075
frogkepler E5-2670 2x8 2 x 16GB 2x K20
pilipili2 E5-2630 2x6 2 x32GB 2% K40
idgraf X5650 2x6 2x36GB 8x TeslaC2050
idchire E5-4640 24 x8 24 x31GB /

Table: Machines used for the dense linear algebra experiments.
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The path to reliable predictions
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o Getting excellent results (e.g., Cholesky on Conan) sometimes do not

requires much efforts

@ But modeling communication heterogeneity, contention, memory
operation (and even sometimes hardware/driver peculiarity) is essential

@ Try to be as exhaustive as possible. ..
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Overview of Simulation Accuracy

Checking predictive capability of the simulation
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Beyond Simple Graphs
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© Evaluating Sparse Linear Algebra Applications



Simulating Sparse Solvers

° QR MUMPS multi-frontal factorization on top of StarPU

e Tree parallelism: nodes in

separate branches can be treated
independently
- fo
e Node parallelism: large nodes m m
can be treated by multiple i
process
@ No GPU support (ongoing) in this study, only multi-core

Porting qrm _starpu on top of SimGrid

e Changing main for the subroutine

@ Changing compilation process

o Careful kernel modeling as matrix dimension keeps changing
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Example for Modeling Kernels: GEQRT

e GEQRT/(Panel) duration:
TGEQRT = a + 2b(NB? x MB) — 2¢(NB? x BK) + %NB3

@ We can do a linear regression based on ad hoc calibration

GEQRT Duration

NB3 1.50 x 1075 (1.30 x 1075, 1.70 x 1075) ***
NB2 « MB 5.49 x 1077 (5.46 x 1077, 5,51 x 10~7) ***
NB3 « BK —5.52 x 1077 (=5.57 x 1077, —5.48 x 10~7) ***
Constant —2.49 x 10! (—2.83 x 101, —2.14 x 101) ***
Observations 493
R? 0.999
Note: *p<0.1; **p<0.05; ***p<0.01
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Comparing Kernel Duration Distributions

Do subtree INIT GEQRT GEMQRT ASM
1. #Flops #Zeros NB NB  #Coeff
2. #Nodes #Assemble MB MB /
3. / / BK BK /
R? 0.99 0.99 0.99 0.99 0.86
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Overview of Simulation Accuracy
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Studying Memory Consumption

e Minimizing memory footprint is very important for such applications
@ Remember scheduling is dynamic so consecutive Native experiments
have different output
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Studying Memory Consumption

e Minimizing memory footprint is very important for such applications
@ Remember scheduling is dynamic so consecutive Native experiments
have different output
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Extrapolating to Larger Machines

@ Predicting performance in idealized context
@ Studying the parallelization limits of the problem
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© Conclusion and Perspectives



@ Works great for hybrid setups with both dense and sparse linear
algebra StarPU applications

@ The simulator is used to investigate scheduling aspects that could not
be studied with a classical approach

@ Anyone can check and try to reproduce this work
http://starpu-simgrid.gforge.inria.fr/

@ This approach allows to:
© Quickly and accurately evaluate the impact of various
scheduling/application parameters:

QR TF17 on riri (40 cores) RAM  Time
RL 58.0GB  157.0s
Simulation 1.5GB  57.0s

@ Test different scheduling alternatives

© Evaluate memory footprint

© Debug applications on a commodity laptop in a reproducible way

© Detect problems with real experiments using reliable comparison
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http://starpu-simgrid.gforge.inria.fr/

There Are Situations Where We're Completely Wrong

e Some are due to bad behavior of the application/runtime in RL
e Some are due to a bad modeling of the platform (e.g., large NUMA)
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Ongoing Work and Perspectives

Ongoing Work

o Simulate StarPU-MPI applications
e Simulate advanced implementations of grm _starpu using:

e 2D partitioning and memory aware scheduling
e GPUs for executing tasks

v

Modeling and Simulation Perspectives

o Large NUMA architectures (with StarPU-MPI?)

e Kernel interferences (cache/memory contention)

@ Predicting performance of next generation machines

V.

Analysis and Visualization Perspectives

@ Trace comparison

e Applicative/spatial /temporal aggregation

@ Building on application models

v
TO7T0
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