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Why would Business need Distributed Computing Systems?
Originally, little need for performance

I Business computations seldom extend beyond ordinary rational arithmetic
(unless when science is involved in business) Mostly desktop usage

I Computer systems distributed iff the company is (interconnect business units)

And then came the Internet

I Some company relying on the Internet emerged (eBay, amazon, google)

I Computers naturally play a central role in their business plan

I Cannot afford to loose clients ; High Availability Computing

I But load is very changing ; Servers dimensioned for flash crowds

Amazon idea

I Data centers often 85% idle

I Rent unused power to others!

I Computers better amortized. Buy
bigger ones, loose no client

I Infrastructure as a Service (IaaS)
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Here Comes the Cloud

Client Incitatives
I Complexity of infrastructure management hidden from users

IT maintenance burden assumed by external specialists
I Pay only used power: rent a server 1h, send computations in the cloud, enjoy

This is called Elastic Computing

I The created need revealed very profound: everyone wants it now
I Clients even want to rent OS+apps (PaaS) or software (SaaS)

The Data Centers Growth
I Scale allows Cost Cuttings, as always.

(Motivation for big DC already existed)
I Clouds removes the wastes due to over-

dimensioning
⇒ Corporate Data Centers become as big
as Scientific Supercomputers! G

o
o
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It’s not that sunny Cloud infrastructures are not that easy and transparent to
use (virtualization and co-localization overhead, unexpected preemption of spot
instances, unavailability) and can quickly reveal expensive
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Volunteer Computing in a Nutshell

Most of the world’s computing power is distributed across the hundreds of millions
of Internet hosts on residential broadband networks

Volunteer computing: harnessing the free collective computational and storage
resources of desktop PC’s throughout the Internet

I Cooperation ; one of the largest and most powerful distributed computing
systems on the planet

I Volunteer donate their unused CPU cycles
to scientific/geeky/humanitarian projects

I Complex client and server scheduling mech-
anisms to handle practical considerations
(e.g., heterogeneity, volatility, volunteer sat-
isfaction).

I Understanding the behavior of such archi-
tectures is non-trivial
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BOINC: the most popular VC infrastructure

The Berkeley Open Infrastructure for
Network Computing is the most popular VC in-
frastructure today:

I 50 projects: SETI@home, WCG, Ein-
stein@home, ClimatePrediction.net, . . .

I 596, 000 hosts, 9.2 PetaFlops (March 2013)

I Since 2000, generated 100+ scientific pub-
lications (Science, Nature)

BOINC has proved to scale to millions of unreliable resources

VC limitations Unfortunately, the types of applications and services that can
run over VC platforms is largely limited to trivially parallel ones

Fair and autonomous scheduling of billions of CPU-bound independent tasks
(i.e. optimize throughput)

Extending to a wider context requires smart modeling and scheduling techniques
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Associated Team Backgrounds

The cloud and VC context have actually a lot in common but propos-
ing good solutions requires the good blend of practice and theory.

Berkeley/Palo Alto Lead development of BOINC middleware for
volunteer computing. Google data-center management. Invualu-
able knowledge of production systems.

I David Anderson, Walfredo Cirne

Inria MESCAL Statistical performance and failure modeling, sim-
ulation, scheduling, game theory and resource management.

I Derrick Kondo, Arnaud Legrand, Bruno Gaujal, Jean-Marc Vin-
cent, Olivier Richard

I Sheng Di, Bahman Javadi, B. Donnassolo, Lucas Schnorr

Inria associated team (2009-2014)

CloudComputing@Home Create a virtually dedicated cloud from
unreliable Internet resources

CloudShare Guaranteed Application Performance on Idle Data Cen-
ter Resources
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Expected outcomes

Models and Algorithms

I Models of bursty workloads and resource usage
I Statistical and machine learning algorithms for predicting

idleness in data centers
I Fair scheduling algorithms for guaranteed performance across

unreliable resources

Traces and Software Tools

I Failure and Application Trace Archive
I Cloud and VC Simulator
I BOINC software adapted to data centers

In the following, I will present a joint work (CCGrid’11) with B. Don-
nassolo and C. Geyer, from UFRGS, Porto Alegre, Brazil.
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The BOINC Server in a Nutshell

Each project sets up its own server

, which uses pragmatic schedul-
ing mechanism to handle:

Volatility and Heterogeneity

I The server waits for clients to contact him
I Upon work request, the server selects a subset of tasks and

assign them a soft deadline
I If a task is not returned before its deadline, it is considered

as lost and may be resubmitted to another client

Rewarding Volunteers

I Clients claim credits based on benchmark
I Servers reward minimum of claimed credits for correct results
I Rank volunteers based on their contribution

Correctness (over-clocking, unstable numerical applications, mali-
cious participants)

I Majority voting
I Limited replication, homogeneous redundancy, black hole
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The BOINC Client in a Nutshell

Each volunteer may register to many projects and define resource
shares

Fairness Respect resource shares and variety ; Fair Sharing. . .

Satisfy deadlines Rough simulation and switch to Earliest Deadline
First if needed

Avoid waste Work as much as possible and do not start working on
tasks whose deadline can obviously not be met

Consequence

Once a task has been downloaded, the client will try to complete it
before its deadline

A project with shorter deadline could thus obtain
more resources than the volunteer wishes

Long term fairness inhibits requesting tasks to overworked projects
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The Deadline Effect

I The slack is the ratio between the deadline and the actual run-
ning time of tasks [KAM07] (has to be > 7; the current median
is about 60)
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BOINC is perfectly tailored for throughput optimization

But with such a slack, response time is really large
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GridBot

GridBot [SSGS09] (Technion - Israel Institute of Technology)

I Focus on response time of BoTs
I Use both community resources (BOINC) and grid resources

(Condor). Has also been connected with Amazon EC2
I Better than BOINC and than Condor for this kind of workload

I Tighter deadlines for reliable resources
I Replicate on reliable resources toward the end

1. System state DB

2. Job Queue

Execution

client

Communication

frontend

Work dispatch logic

Grid overlay 

constructor

Grid submitter

Execution

client

Execution

client

Community grid

Collaborative grid
Dedicated cluster

Submit

Execution
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Grid submitter

Submit

Resource Request
Resource Request

Fetch job

Fetch/generate jobs

Fetch queue stateUpdate result

Work−dispatch server
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I Focus on response time of BoTs
I Use both community resources (BOINC) and grid resources

(Condor). Has also been connected with Amazon EC2
I Better than BOINC and than Condor for this kind of workload

I Tighter deadlines for reliable resources
I Replicate on reliable resources toward the end

FCFS scheduling on a desktop Grid [KTB+04]

A.k.a the last finishing task issue
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I Better than BOINC and than Condor for this kind of workload
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I Replicate on reliable resources toward the end

The deadline/boomerang effect

“Since a single client is connected to many such
projects, those with shorter deadlines (less than three
days) effectively require their jobs to be executed
immediately, thus postponing the jobs of the other
projects. This is considered selfish and leads to con-
tributor migration and a bad project reputation, which
together result in a significant decrease in throughput.”
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GridBot [SSGS09] (Technion - Israel Institute of Technology)

I Focus on response time of BoTs
I Use both community resources (BOINC) and grid resources

(Condor). Has also been connected with Amazon EC2
I Better than BOINC and than Condor for this kind of workload
I Tighter deadlines for reliable resources
I Replicate on reliable resources toward the end

Some (guru) volunteers noticed that tight deadline
jobs were causing significant delays in other projects
and even deadline misses

I Are current mechanisms sufficient to isolate
projects from each others ?

I Response-time optimizing strategies (deadline,
replication) need to be accepted by volunteers and
other projects
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A Game Theoretic Model of BOINC

Although every client tries to fairly and efficiently share its resources,
the configuration decisions of each project may impact the perfor-
mance of other projects

A Non Cooperative Game This can be modeled as a game be-
tween the projects

I Each project should choose its own scheduling strategy (dead-
line, replication, resource selection, . . . ) to optimize its own
metric

I This is a long term game
I The volunteer opinion and feeling really matters

Methodology

I Really hard to study by deploying a real system
I Really hard to study on a purely theoretical point of view

We used SimGrid, a simplified but realistic modeling of BOINC,
real traces from the FTA, and realistic application characteristics
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Modeling the Whole System

A complex problem

A multi-parametric, multi-player, multi-
objective setting

Volunteer Vj :

I peak performance (in
MFLOP .s−1)

I an availability trace

I project shares

Project Pi:

I Obj i: objective function:
either throughput %i or the
average completion time
of a batch αi

I wi [MFLOP .task−1]: size
of a task

I bi [task .batch−1]: number
of tasks within each batch

I ri [batch.day−1]: input
rate, i.e., the number of
batches per day
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Modeling the Whole System

(π, σ, τ, γ)A (π, σ, τ, γ)B (π, σ, τ, γ)C

A complex problem

A multi-parametric, multi-player, multi-
objective setting

Strategy Si

I πi: work send policy
[KAM07]
(πcste=c/saturation/EDF)

I σi: slack [KAM07]
(s ∈ [1, 10])

I τi: conn. interval [HAH09]
(12mn to 30hrs)

I γi: replication strategy
[KCC07] (r ∈ {1, . . . , 8})

The strategy Si of a project Pi

is thus a tuple (π, σ, τ, γ)
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Modeling the Whole System

(%A,WA) (αB,WB) (%C ,WC)

⇒
(π, σ, τ, γ)A (π, σ, τ, γ)B (π, σ, τ, γ)C

A complex problem

A multi-parametric, multi-player, multi-
objective setting

Strategy Si

I πi: work send policy
[KAM07]
(πcste=c/saturation/EDF)

I σi: slack [KAM07]
(s ∈ [1, 10])

I τi: conn. interval [HAH09]
(12mn to 30hrs)

I γi: replication strategy
[KCC07] (r ∈ {1, . . . , 8})

The strategy Si of a project Pi

is thus a tuple (π, σ, τ, γ)

Outcome

I Waste

I Throughput/Response Time

; Cluster Equivalence
[KTB+04]
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Sensibility Analysis

I 1000 clients over 5 months
I 4 identical throughput projects with standard configuration
I 1 burst project adjusting its slack and connection interval

parameters (fixed send policy and no replication)

and observe impact on

and waste
cluster equivalence

1 Burst project

(π, σ, τ , γ)
Tune slack and
connection interval

4 Continuous projects

(π, σ, τ, γ) (π, σ, τ, γ) (π, σ, τ, γ) (π, σ, τ, γ)
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Sensibility Analysis

I 1000 clients over 5 months
I 4 identical throughput projects with standard configuration
I 1 burst project adjusting its slack and connection interval

parameters (fixed send policy and no replication)

Similar studies at finer granularity and for other parameters enable
to understand that:

I σ: Slack has a dramatic effect on CE of all projects but a
reasonable trade-off can be found (around 1.1)

Burst projects need to carefully tune their slack

I τ: Connection interval has almost no influence and can be ar-
bitrarily set to 1hr

I γ: Allowing a few replicas (around 2-3) improves CE and waste
I π: Among the different work send policies we tried, one of them

leads to unacceptably high waste (around 50%) for a minor
CE improvement and should thus be disregarded as it wastes
resources and could upset volunteers.
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Best Response Strategy and Nash Equilibrium

Definition: Nash Equilibrium.

S is a Nash equilibrium for (V, P) iff

for all i and for any S′
i, CE i(V, P, S|Si=S′

i
) 6 CE i(V, P, Si),

where S|Si=S′
i

denote the strategy set where Pi uses strategy S′
i and

every other player keeps the same strategy as in S.

I a Nash equilibrium is a stable point for a best response strat-
egy

I a best response strategy does not necessarily converge

I there may be no Nash equilibrium

I Nash equilibria are in the general case neither fair nor efficient

I Although they are not particularly desirable, they are adapted
to model our situation
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Utility Set Sampling and Nash Equilibrium

I 2 identical throughput projects with standard configuration
I 4 identical burst project adjusting their slack (EDF send

policy, replication=2)
I Almost saturated system
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Utility Set Sampling and Nash Equilibrium

I 2 identical throughput projects with standard configuration
I 4 identical burst project adjusting their slack (EDF send

policy, replication=2)
I Almost saturated system
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Utility Set Sampling and Nash Equilibrium

I 1 identical throughput projects with standard configuration
I 7 identical burst project adjusting their slack (EDF send

policy, replication=2)
I Almost saturated system
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Conclusion

Harmful non-cooperative optimization Under high load and high pres-
sure from burst projects, the current BOINC scheduling mechanism is
unable to enforce fairness and project isolation We found inefficient Nash
Equilibrium:

I Efficient configurations seem rather unstable.
I Can we found worse than 10% inefficiency?
I Could there be Braess paradoxes?

Game theory provides nice tools to address such issues
(correlated equilibria, pricing mechanisms, coalition)

Fair Optimization of Bag of Tasks A profound need: umbrella projects.
Need to leverage both volunteer, grid and cloud resources.
Currently designing fair multi-user scheduler for this context.

Evolution of the Associated Team

I Collaboration with Google on cloud load characterization is on hold
(Derrick Kondo is on sabbatical in the Bay area)

I Upcoming collaboration between B. Gaujal (Inria), R. Righter
(UCB) and D. Anderson on reliable data storage in BOINC

BOINC workshop September in Grenoble.
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