
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007 1

Centralized versus Distributed Schedulers for
Bag-of-Tasks Applications
Olivier Beaumont1, Larry Carter2, Jeanne Ferrante2,
Arnaud Legrand3, Loris Marchal4 and Yves Robert4

Abstract— Multiple applications that execute concur-
rently on heterogeneous platforms compete for CPU and
network resources. In this paper we consider the problem
of scheduling applications to ensure fair and efficient
execution on a distributed network of processors. We limit
our study to the case where communication is restricted
to a tree embedded in the network, and the applications
consist of a large number of independent tasks (Bags
of Tasks) that originate at the tree’s root. The tasks of
a given application all have the same computation and
communication requirements, but these requirements can
vary for different applications. The goal of scheduling is to
maximize throughput of each application while ensuring
a fair sharing of resources between applications.

We can find the optimal asymptotic rates by solving a
linear programming problem that expresses all necessary
problem constraints, and we show how to construct a
periodic schedule from any linear program solution. For
single-level trees, the solution is characterized by process-
ing tasks with larger communication-to-computation ratios
at children with larger bandwidths. For multi-level trees,
this approach requires global knowledge of all application
and platform parameters. For large-scale platforms, such
global coordination by a centralized scheduler may be
unrealistic. Thus, we also investigate decentralized sched-
ulers that use only local information at each participating
resource. We assess their performance via simulation,
and compare to an optimal centralized solution obtained
via linear programming. The best of our decentralized
heuristics achieves the same performance on about two-
thirds of our test cases, but is far worse in a few cases.
While our results are based on simple assumptions and
do not explore all parameters (such as the maximum
number of tasks that can be held on a node), they provide
insight into the important question of fairly and optimally
scheduling heterogeneous applications on heterogeneous
grids.

Index Terms— parallel computing, scheduling, multiple
applications, bag of tasks, resource sharing, fairness,
throughput.

1: Laboratoire LaBRI, CNRS-INRIA Bordeaux, France,
Olivier.Beaumont@labri.fr
2: Dept. of Computer Science and Engineering,
University of California, San Diego, USA

{carter,ferrante}@cs.ucsd.edu
3: CNRS, Laboratoire LIG, projet INRIA MESCAL,
Grenoble, France, Arnaud.Legrand@imag.fr
4: Laboratoire LIP, CNRS-INRIA, École
Normale Supérieure de Lyon, France.
{Loris.Marchal,Yves.Robert}@ens-lyon.fr

I. INTRODUCTION

In this paper, we consider the problem of schedul-
ing multiple applications that are executed concurrently,
hence that compete for CPU and network resources. The
target computing platform is a heterogeneous network of
computers structured either as a star network (a one-level
rooted tree) or a multi-level rooted tree. In both cases we
assume full heterogeneity of the resources, both for CPU
speeds and link bandwidths.

Each application consists of a large collection of
independent equal-sized tasks, and all tasks originate
at the tree’s root. This scenario is somewhat similar
to that addressed by existing systems. For instance
BOINC [1] is a centralized scheduler that distributes
tasks for participating applications, such as SETI@home,
ClimatePrediction.NET, and Einstein@Home. The ap-
plications can be very different in nature, e.g., files to
be processed, images to be analyzed or matrices to be
manipulated. Consequently, we assume each application
has an associated communication-to-computation ratio
for all of its tasks. This ratio proves to be an important
parameter in the scheduling process.

The scheduling problem is to maintain a balanced ex-
ecution of all applications while using the computational
and communication resources of the system effectively
to maximize throughput α(k) of each application (the
average number of tasks of application Ak, 1 6 k 6 K
processed per time-unit). For each application, the root
node must decide which workers (i.e. which subtree)
the tasks are sent to. For multi-level trees, each non-
leaf worker must make similar decisions: which tasks
to compute locally, and which to forward to workers
further down in the tree. The scheduler must also ensure



2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

a fair management of the resources. If all tasks were
equally important, the scheduler should aim to process
the same number of tasks for each application. We could
generalize this by allowing each application Ak to be
assigned a priority weight w(k) that quantifies its relative
value. For instance, if w(1) = 3 and w(2) = 1, the
scheduler should try to ensure that three tasks of A1 are
executed for each task of A2. However, we avoid using
weights in the following to simplify the presentation1.

We will consider both centralized and decentralized
schedulers. For smaller platforms it may be realistic
to assume a centralized scheduler, which makes its
decisions based upon complete and reliable knowledge
of all application and platform parameters. With such
knowledge at our disposal, we are able to determine an
optimal schedule, i.e. a schedule that maximizes the fair
throughput asymptotically. This is done by formulating
all constraints into a linear programming problem, and
using the solution to construct a periodic schedule.
Except during the (fixed length) start-up and clean-
up periods no schedule can have higher throughput.
For single-level rooted trees, we provide an interesting
characterization of the optimal solution: applications
with larger communication-to-computation ratio should
be processed by the workers with larger bandwidths, in-
dependently of the communication-to-computation ratios
of the workers.

For large-scale platforms, particularly ones in which
resource availability changes over time, a centralized
scheduler may be undesirable. Only local information,
such as the current capacity (CPU speed and link
bandwidth) of a processor’s neighbors, is likely to be
available. One major goal of this paper is to investigate
whether decentralized scheduling algorithms can reach
optimal throughput, or at least achieve a significant
fraction of it. We provide several decentralized heuris-
tics that rely exclusively on local information to make
scheduling decisions. The key underlying principles of
these heuristics come from our characterization of the
optimal solution for star networks: give priority to high-
bandwidth children, and assign them tasks of larger
communication-to-computation ratios. We evaluate the
decentralized heuristics through extensive simulations
using SimGrid [3], and use a centralized algorithm
(guided by the linear program solution) as a reference
basis.

The rest of the paper is organized as follows. Section II
is devoted to an overview of related work. In Section III,
we state precisely the scheduling problem under con-

1All results can be easily extended when adding weights: simply
replace α(k) by α(k)

w(k) . See [2] for further details.

sideration, with all application and platform parameters,
and discuss the objective function used afterwards. Sec-
tion IV explains how to analytically compute the best
solution, using a linear programming approach, and char-
acterizes the solution for single-level trees. Section V is
then a discussion on the design of several decentralized
scheduling heuristics, while Section VI provides an
experimental comparison of these heuristics. Finally, we
state some concluding remarks in Section VII.

II. RELATED WORK

We classify related research in three main areas:

A. Bag of Tasks Scheduling on Computational Grids

Bag of Tasks applications are parallel applications
whose tasks are all independent. This framework is mo-
tivated by problems that are addressed by collaborative
computing efforts such as SETI@home [4], factoring
large numbers [5], the Mersenne prime search [6], and
those distributed computing problems organized by com-
panies such as Entropia [7]. One can argue that Bag
of Tasks applications are most suited for computational
grids, because communication can easily become a bot-
tleneck for tightly-coupled parallel applications.

Condor [8] and APST [9], [10] are one of the
first projects providing specific support for such ap-
plications. Condor was initially conceived for campus-
wide networks [8], but has been extended to run on
grids [11]. While APST is user-centric and does not
handle multiple-applications, Condor is system-centric.
Those two projects are designed for standard grids
but more recent and active projects like OurGrid [12]
or BOINC [1] target more distributed architectures
like desktop grids. BOINC [1] is a centralized sched-
uler that distributes tasks for participating applications,
such as SETI@home, ClimatePrediction.NET, and Ein-
stein@Home. The set of resources is thus very large
while the set of applications is small and very controlled.
OurGrid is a brazilian project that encourages people
to donate their computing resources while maintaining
the symmetry between consumers and providers. While
APST, Condor and BOINC all rely on a centralized
scheduler and may suffer from scalability issues, Our-
Grid is the only framework we know of where scheduling
is done in a fully distributed way, following the Peer-to-
Peer approach.

However, all these projects generally focus on design-
ing and providing a working infrastructure, and they do
not provide any analysis of scheduling techniques suited
to such environments.



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 3

B. Steady-State Scheduling

Because the number of tasks to be executed on
the computing platform is expected to be very large
(otherwise why deploy the corresponding application
on a distributed platform?), it makes sense to focus
on steady-state optimization problems rather than on
standard makespan minimization problems. Minimizing
the makespan, i.e. the total execution time, is a NP-
hard problem in most practical situations [13], [14],
[15], while it turns out that the optimal steady-state can
often be characterized very efficiently, with low-degree
polynomial complexity.

The steady-state approach has been pioneered by
Bertsimas and Gamarnik [16]. It has been used success-
fully in many situations [17]. In particular, steady-state
scheduling has been used to schedule independent tasks
on heterogeneous tree-overlay networks [18], [19]. This
is the same problem dealt with in the present paper,
but restricted to a single application. Bandwidth-centric
scheduling is introduced in [18], and extensive experi-
ments are reported in [20]. Autonomous protocols for
bandwidth-centric scheduling are investigated by Carter
et al. [21]. Such distributed autonomous protocols have
been obtained only on tree platforms. That is why in the
current more complex context, we restrict our study to
tree platforms. The steady-state approach has also been
used by Hong et al. [22] who extend the work of [18] to
deploy a divisible workload on a heterogeneous platform.
However to the best of our knowledge, the steady-state
scheduling approach has never been used in a multiple-
application context.

C. Fairness

In a multi-user environment, resources have to be
fairly shared between users. This issue becomes more
and more critical as the size of the system increases.
There is actually a large gap between what is known
on the theorical side in game theory and what is im-
plemented in practical Bag of Tasks scheduling envi-
ronments. In most practical environments, some fairness
is ensured through the use of hand-tuned priorities
or reciprocation-based economy [23]. Market-inspired
economy and auction-based mechanism could also be
used. But in most existing work related to fairness in
grid environments, the mechanism is not based on clear
definitions of fairness criteria.

Fairness is yet a classical criterion in network band-
width allocation. Optimizing the sum of the throughputs
is known as maximizing the throughput or profit of a
network. Optimizing this kind of objective is natural
for an access provider who receives an amount of

money proportional to the throughput that he/she is able
to provide and who wants to maximize his/her profit.
However, this criterion is known to be unfair and can lead
to starvation. That is why in section III-D, we choose
to maximize the minimum of α(k) rather than the sum.
This criterion is known in the literature as max-min and
is intuitively fair since all throughput are computed to be
as close as possible from each other. Between these two
extremes, other criteria can be found (e.g., proportional
fairness that maximizes

∑
log(α(k)) or minimum poten-

tial delay that minimizes
∑ 1

α(k) ). In fact all these crite-
ria (profit, proportional fairness and minimum potential
delay) amount to maximizing the arithmetic, geometric
and harmonic mean of the throughput [24]. It is well-
known in the networking community [25] that max-min
fairness is generally achieved by explicit-rate calculation
(e.g., in ATM networks) and rather hard to achieve in a
fully-decentralized way. Yet, fully distributed algorithms
are known to realize proportional fairness (such as some
variants of TCP). Adapting such algorithms to Bag of
Tasks scheduling environments seems challenging as
both communications and computations are involved.

III. FRAMEWORK AND MODELS

In this section, we clarify the assumptions underlying
our work; while they are overly simplistic, we believe
nevertheless that they provide insight into the important
question of how to optimally and fairly schedule hetero-
geneous applications on heterogeneous grids.

A. Platform Model

The target computing platform is either a single-level
tree (also called a star network) or an arbitrary tree. The
processor at the root of the tree is denoted P0. There
are P additional “worker nodes” P1, P2, . . . , PP ; each
worker Pu has a single parent Pp(u), and the link between
Pu and its parent has bandwidth bu. We assume a linear-
cost communication model, hence it takes X/bu time
units to send a message of size X from Pp(u) to Pu. For
sake of simplicity, we ignore processor-task affinities;
instead, we assume only the number of floating-point
operations per second (cu for processor Pu) determines
the application execution speed.

There are several scenarios for the operation of the
processors. In this paper, we concentrate on the full
overlap, single-port model [26], [27]. In this model, a
processor node can simultaneously receive data from one
of its neighbors, perform some (independent) computa-
tion, and send data to one of its neighbors. At any given
time, there are at most two communications involving a
given processor, one sent and the other received.



4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

B. Application Model

We consider K applications, Ak, 1 6 k 6 K. The
root node P0 initially holds all the input data necessary
for each application Ak. Each application is composed
of a set of independent, equal-sized tasks. We can think
of each Ak as a bag of tasks, and the tasks are files
that require some processing. A task of application Ak

is called a task of type k. We assume one can express
the computational requirements of tasks as a number of
floating-point operations, and we let c(k) be the amount
of computation (in floating point operations) required to
process a task of type k. Similarly, b(k) is the size (in
bytes) of (the file associated to) a task of type k. We as-
sume that the only communication required is outwards
from the root, i.e. that the amount of data returned by the
worker is negligible. Our results are equally applicable to
the scenario in which the input to each task is negligible
but the output is large. Note that our notations use
subscripts for platform resources (bandwidth bu, CPU
speed cu) and superscripts for application parameters
(bytes b(k), floating-point operations c(k)).

C. Steady-State Scheduling

If each application had an unlimited supply of tasks,
each application should aim at maximizing its average
number of task processed per time-unit (the throughput).
When the number of tasks is very large, optimizing
the steady-state throughput enables to derive periodic
asymptotically optimal schedules for the makespan [18],
[19]. In our setting where each application has a very
large number of tasks, we should thus try to optimize
the steady-state throughput of each application.

More formally, for a given infinite schedule we can
define N (k)(t) the number of tasks of type k processed
in time interval [0, t]. The throughput for application k of
such a schedule is defined as α(k) = lim inft→∞

N (k)(t)
t .

Similarly we can define:
• α

(k)
u , the average number of tasks of type k executed

by Pu per time unit.
• sent(k)

u→v, average the number of tasks of type k
received by Pv from Pu per time unit.

We will see in Section IV-A that the α
(k)
u ’s and the

sent(k)
u→v’s are linked by linear equations and satisfy

linear constraints, which enables to derive upper bounds
on the throughput. It is possible to build a periodic
schedule, i.e. a schedule that repeatedly begins and ends
in the same state (see [18], [19] for more details),
from values for α

(k)
u and sent(k)

u→v returned by the linear
program.

The throughput achieved by this periodic schedule for
each application k is optimal. In other words, when the

uk

α(k)

(a) Linear utility function

uk

α(k)

(b) Voice over IP utility func-
tion

uk

α(k)

(c) Threshold utility function

uk

α(k)

(d) Price-accounting utility
function

Fig. 1. Examples of utility functions

number of tasks per application is large, this approach
enables to circumventing the NP-completeness of the
makespan optimization problem while deriving efficient
schedules.

D. Objective Function

In this section, we present a few game theory notions
and how they translate to our context. This help us
to correctly define a metric to optimize in our setting.
Game theory provides a general framework to model
situations where many users compete for resources. Each
user (in our context, each application) is characterized
by a utility function uk defined on (α(k)

p )16k6K,16p6P ,
where K is the number of applications, and P is the
number of computing resources. A variety of possible
utility functions are shown in Figure 1; in the remaining
of the article, we focus on linear utility functions:

uk(α) =
∑

p

α(k)
p = α(k)

Our goal is to find scheduling strategies such that the
utility of each user is maximized. However, as these
users may compete for the same resources, it is generally
not possible to simultaneously maximize the utility of
each user. Instead, we employ a utility set U :

U = {(u1(α), . . . , uK(α))|α is feasible}.

For tree-shaped platforms, the set of constraints on
α

(k)
u is a set of linear inequalities (as seen later in

Section IV-A), and we know that the utility set is thus
a convex polyhedron. Using the same techniques as
in [28], [17], [29], one can show for general platforms



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 5

α(1)

α(2)

(a) Conflict on a worker

α(1)

α(2)

(b) Synergy

α(1)

α(2)

(c) Independency

α(1)

α(2)

(d) Typical utility set for tree

Fig. 2. A few examples of utility sets. Dotted lines are isolines
of (α(1), α(2)) → min(α(1), α(2)) and bold lines represent Pareto
optimal points.

that the utility set is also a convex polyhedron, as
illustrated in Figure 2.

Figure 2(a) corresponds to the typical situation where
two applications are competing on a single node:{

α(1) · c(1) + α(2) · c(2) 6 cu α(1) > 0
α(1) · b(1) + α(2) · b(2) 6 bu α(2) > 0

In a multi-user context, optimality is not defined as
simply as in the single-user context, and it is common
to use Pareto-optimality, defined as follows:

Definition 1 (Pareto-optimality): α̃ is Pareto-optimal
if and only if:

∀α, ∃i, ui(α) > ui(α̃) ⇒ ∃j, uj(α) < uj(α̃)
In other words, α̃ is Pareto optimal if it is impossible to
strictly increase the utility of a user without strictly de-
creasing that of another. For example, in Figure 2(a), all
points on the right-most boundaries are Pareto-optimal
whereas in Figure 2(b), only the right-most point is
Pareto-optimal. Any Pareto optimal point is thus a priori
as worth of interest as any other Pareto optimal point.
Defining fairness can be seen as defining a criterion for
choosing amongst Pareto optimal points.

One of the most common fairness criterion is the well-
known max-min fairness strategy [30], [25]. For a given
allocation α, there is an application k whose utility is
smaller than the other ones. A max-min fair allocation is
such that this smaller utility is as large as possible. Such
a criterion is thus more reasonnably fair than for example
trying to maximizing the sum of utilities (also known

as social optimum). Indeed with such a criterion, some
applications may receive nothing at all (as for example in
Figure 2(d)). Moreover, by using weighted throughput,
any Pareto-optimal point is a max-min fair point for a
given set of weights. We will thus focus in the following
on max-min fairness:

Maximize min
k

α(k)

On Figure 2(a), the minimum of the α(k) is maximized
at a point where all the α(k) have the same value. One
can easily check that the only Pareto optimal point of
Figure 2(b) is also the point such that the minimum of
the α(k) is maximized. However, one can also check that
the points such that the α(k)’s all have the same value are
not efficient, which corresponds to the well-known fact
that giving the same thing to each user is not always a
good option. In fact the shape of this utility set is rather
uncommon and corresponds to a situation where there is
a synergy between both users. Such situations may occur
with caching mechanisms for example but cannot occur
in our framework because all coefficients of the linear
constraints are positive.

One may then wonder whether in our context max-min
optimal solutions are always such that the throughput
of all applications are the same or not. We will see
now that this is true on trees but does not hold on
general platforms. The utility set Figure 2(c) is typical of
the case where two applications originate from different
locations and where one of them can only use a limited
area of the network (due to a very high communication
to computation ratio and a small connectivity to the
network for example). In such case, it may be possible
to increase the throughput of the application with lower
ratio (α(2) here) without decreasing the throughput of
the higher one (α(1) here). However, if both applications
start using the same resources, the throughput of one
application can only increase at the expense of the
throughput of another application. It is important to note
that many different points maximize the minimum of the
throughputs (all points belonging to U and to the lowest
isoline of min(α(1), α(2))). However, only one of them
is of interest (i.e. Pareto Optimal). It is well-known in
the network community (see for example [30], [25]) that
max-min fairness should be recursively defined in this
case: the first minimum should be maximized, then the
second should be maximized, and so on.

Such situations cannot occur on tree-shaped platforms
as applications originate from the same location and thus
always compete on the same set of resources. Note that
this result does not only hold for the mentioned full
overlap, single-port model but applies to any situation



6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

where applications originate from the same location.
That is why in the remaining of this article we can
search for solutions where all application throughputs are
equal. But in a more general situation, we should look
for Pareto-optimal allocations and the previous stopping
condition could not be used anymore.

IV. COMPUTING THE OPTIMAL SOLUTION

In this section, we show how to describe the optimal
throughput using a linear programming formulation. For
star networks we give a nice characterization of the
solution, which will guide the design of some heuristics
in Section V.

A. Linear Programming Solution

A summary of our notation follows:
• P0 is the root processor and Pp(u) is the parent of

node Pu for u 6= 0.
• Γ(u) is the set of indices of the children of node

Pu.
• Node Pu can compute cu floating-point operations

per time unit, and, if u 6= 0, can receive bu bytes
from its parent Pp(u).

• Each task of type k involves b(k) bytes and c(k)

floating-point operations.
The linear programming formulation in (1) allows us to
solve for the following variables:

• α
(k)
u , the average number of tasks of type k executed

by Pu per time unit on the whole platform.
• α(k), the average number of tasks of type k executed

per time unit.
• sent(k)

u→v, average the number of tasks of type k
received by Pv from Pu per time unit.

Any valid schedule must satisfy the linear constraints
of (1); we seek a schedule also satisfying the optimal
value of the objective function.

MAXIMIZE mink

{
α(k)

}
UNDER THE CONSTRAINTS

∀k,
∑

u α
(k)
u = α(k) (definition of α(k))

∀k,∀u 6= 0, sent(k)
p(u)→u = α

(k)
u +

∑
v∈Γ(u) sent(k)

u→v

(data conservation)
∀u,

∑
k α

(k)
u · c(k) 6 cu

(computation limit at node Pu)

∀u,
∑

v∈Γ(u)

P
k sent(k)

u→v·b(k)

bv
6 1

(communication limit out of Pu)
∀k, u α

(k)
u > 0 and sent(k)

u→v > 0(non-negativity)

(1)

All the input parameters to the linear programming
problem are rational numbers, and the solution will be
rational also (hence computed in polynomial time).

As explained in Section III-D, on tree-shaped plat-
forms, the previous solution is the max-min fair solution.
On general platform, similar constraints can be written
but solving this linear program would not give the
max-min fair solution as the first minimum should be
maximized, then the second should be maximized, and so
on. This can easily be done in our setting by identifying
which applications correspond to the first minimum by
looking at saturated constraints (those inequalities that
are in fact equalities at optimum point). One can then
rerun the linear program, with the throughput of these ap-
plications fixed, to maximize the smallest throughput of
the remaining applications. This process can be repeated
until all applications are saturated. Max-min solutions
can thus easily be computed in polynomial time, even
on complex platforms.

B. Reconstructing a Periodic Schedule from a Linear
Programming Solution

The linear inequalities in the linear programming
problem (1) describe steady state behavior, but it is not
immediately obvious that there exists a valid schedule
satisfying these constraints that also achieves the desired
throughput. Nevertheless, let us suppose that such a
solution exists, and we have determined all the values
α

(k)
u , and sent(k)

u→v. We define a periodic schedule as
follows.

Define the time period Tperiod to be the least common
multiple of the denominators of these rational values.
Thus, in one time period, there will be an integral
number of tasks sent over each link and executed by
each node. We give each node sufficient buffer space
to hold twice the number of tasks it receives per time
period. Each task received in period i will, in period
i+1, either be computed locally or sent to a child. Since
each node receives tasks from only one other node (its
parent), there is no concern with scheduling the incoming
communications to avoid conflicts. Further, each node
is free to schedule its sends arbitrarily within a time
period. Note that this schedule is substantially simpler
than what is required when processors were connected
as an arbitrary graph (cf. [19]).

A node at depth d does not receive any tasks during
the first d − 1 time periods, so will only enter “steady
state mode” in time period d. Similarly, the root will
eventually run out of tasks to send, so the final time
periods will also be different from steady state. It is
often possible to improve the schedule in the start-up and



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 7

clean-up time periods, which is the concern of the NP-
complete makespan minimization problem. However,
the periodic schedule described above is asymptotically
optimal. More precisely, let z be the number of tasks
executed by the periodic schedule in steady state during
d time periods, where d is the maximum depth of any
node that executes a positive number of tasks. Then
our schedule will execute up to z fewer tasks than
any possible (not necessarily periodic) schedule. More
precisely, given a time-bound B for the execution, it
can be shown that the periodic schedule computes as
many tasks of each type as the optimal, up to a constant
(independent of B) number of tasks. This result is an
easy generalization of the same result with a single
application [18], [19]. Note that as the applications we
consider consist of a large number of independent tasks,
z is generally much smaller than the total number of
tasks of an application.

One final comment is that the time period Tperiod, and
the amount of buffer space used, can be extraordinarily
large, making this schedule impractical. We will revisit
this issue later.

C. The Optimal Solution for Star Networks

When the computer platform is a star network, we
can prove that the optimal solution has a very partic-
ular structure: applications with higher communication-
to-computation ratio are scheduled on processors with
higher bandwidth. Thus, if we order the processors
according to their bandwidths, then each application
is executed by a set of consecutive nodes, which we
refer to as a slice. The application with the highest
communication-to-computation ratio is executed by a
first slice of processors, those with largest bandwidths.
Then the next most communication-intensive application
is executed by the next slice of processors, and so on.
There is a possible overlap at the slice boundaries. For
instance Pa1 , the processor at the boundary of the first
two slices, may execute tasks for both applications A1

and A2.
To simplify matters, we consider the root P0 to be

a worker with infinite bandwidth (b0 = +∞). The
following proposition proves that the optimal solution
has the structure described above.

Proposition 1: Sort nodes by bandwidth so that b0 >
b1 . . . > bp, and sort the applications by communication-
to-computation ratio so that b(1)

c(1) > b(2)

c(2) . . . > b(K)

c(K) . Then
there exist indices a0 6 a1 . . . 6 aK such that only
processors Pu, u ∈ [ak−1, ak], execute tasks of type k in
the optimal solution.

Proof: The key idea is to show that if a node
Pi is assigned a task with a lower communication-to-

computation ratio than a task assigned to Pi+1, then these
two nodes could swap an equal amount of computational
work. This would reduce the communication time re-
quired by the schedule without changing any throughput.
Thus, by a sequence of such swaps, any schedule can
be transformed to one of the desired structure, without
changing the fair throughput. See [2] for a detailed proof.

This characterization does not enable to determine the
boundaries of the slices nor the α

(k)
u through analytical

formulas. We did not succeed in deriving a counterpart
of Proposition 1 for tree-shaped platforms. Intuitively,
the problem is that a high-bandwidth child of node
Pi can itself have a low-bandwidth, high-compute-rate
child, so there is no a priori reason to give Pi only
communication-intensive tasks. Still, we use the intuition
provided by Proposition 1 and its proof to design the
heuristic of Section V-E.

V. DEMAND-DRIVEN AND DECENTRALIZED

HEURISTICS

As shown in Section IV-A, given a tree-shaped plat-
form and the set of all application parameters, we are
able to compute an optimal periodic schedule from any
linear programming solution. However, this approach
suffers from several serious drawbacks. First, the period
of the schedule is the least common multiple of the
denominators of the solution of the linear program (1).
This period may be huge, requiring the nodes to have un-
reasonably large buffers to ensure uninterrupted steady-
state behavior. The problem of buffer size has already
been pointed out in [21], [31], where it is shown that no
finite amount of buffer space is sufficient for every tree.
It is also known that finding the optimal throughput when
buffer sizes are bounded is a strongly NP-hard problem
even in very simple situations [31].

Since unlimited buffer space is unrealistic, we will
only consider demand-driven algorithms, which operate
as follows. Each node has a local worker thread and a
scheduler thread. The worker thread is an infinite loop
that requests a task from the same node’s scheduler
thread and then, upon receiving a task, executes it.
Figure 3 shows the pseudo-code for the scheduler thread.
The “select” choices in line 5 depend on the particular
heuristic used, and can be based on, for instance, the
history of requests, task types it has received, and the
communication times it has observed for its children.

A second problem that some schedulers (including
those generated as in Section IV-B) encounter is that
centralized coordination becomes an issue as the size
of the platform grows. It may be costly to collect up-
to-date information and disseminate it to all nodes in



8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

1: Loop
2: If there will be room in your buffer, request work from your parent.
3: Get incoming requests from your local worker and children, if any.
4: Move incoming tasks from your parent, if any, into your buffer.
5: Select which thread (your local worker or a child’s scheduler) to assign work to, and the type of

application that will be assigned.
6: If you have a request and a task that match your choice Then
7: Send the task to the chosen thread (when the send port is free)
8: Else
9: Wait for a request or a task

Fig. 3. Demand-driven scheduler thread, run in each node

the system. Consequently, a decentralized scheduling
algorithm, where all choices are based exclusively on
locally available information, is desirable.

In the following we consider one demand-driven algo-
rithm that is based on global information (derived from
a solution to the linear programming problem), and four
algorithms that are fully decentralized.

A. Centralized LP-based (LP)

If we know the computation power and communica-
tion speeds of all nodes in the distributed system, we can
solve the linear programming problem (IV-A), obtaining
values for the number of tasks of each type it should
assign to each of its children during each time period.
Thereafter, no further global communication is required.

Each scheduler thread uses a 1D load-balancing mech-
anism [32] to select a requesting thread and an appli-
cation type. The 1D load-balancing mechanism works
as follows: if task k should be chosen with frequency
f(k), and has already been chosen g(k) times, then the
next task to be sent will be of type `, where g(`)+1

f(`) =

mink
g(k)+1
f(k) .

We might hope the LP heuristic would always con-
verge to the optimal throughput, but we will see in
Section VI-B.1 that this is not always the case, primarily
because of insufficient buffer space.

B. First Come First Served (FCFS)

The FCFS heuristic is a very simple and common
decentralized heuristic. Each scheduler thread simply
fulfills its requests on a First Come First Served basis,
using the tasks it receives in order from its parent.
The root ensures fairness by selecting task types using
a round-robin selection. This simple heuristic has the
disadvantage, not shared by the other methods we con-
sider, that an extremely slow communication link cannot
be avoided. Thus, optimal performance should not be
expected.

C. Coarse-Grain Bandwidth-Centric (CGBC)

This heuristic (CGBC) builds upon our previous work
for scheduling a single application on a tree shaped plat-
form [18], [19]. In bandwidth-centric scheduling, each
node only needs to know the bandwidth to each of its
children. The node’s own worker thread is considered to
be a child with infinite bandwidth. The scheduler thread
prioritizes its children in order of bandwidth, so the
greatest bandwidth has highest priority. The scheduler
always assigns tasks to the highest-priority requester.
Bandwidth-centric scheduling has been shown to have
optimal steady-state throughput for single application,
both theoretically and, when the buffers are sufficiently
large, in extensive simulations.

Our coarse-grain heuristic assembles several tasks
into a large one. More precisely, we build a macro-task
out of one task of type k, for each k, and the macro-
tasks are scheduled using the bandwidth-centric method.
Thus, fairness is assured.

Unfortunately, even though bandwidth-centric
scheduling can give optimal throughput of macro-tasks,
the CGBC heuristic does not reach the optimal fair
throughput. Indeed, Proposition 1 asserts that in star
networks, nodes with faster incoming links should
process only tasks with larger communication-to-
computation ratios. But since a macro-task includes
tasks of all types, CGBC will send communication-
intensive tasks to some low-bandwidth nodes in a star
network.

D. Parallel Bandwidth-Centric (PBC)

The parallel bandwidth-centric heuristic (PBC) su-
perposes bandwidth-centric trees for each type of task,
running all of them in parallel. More precisely, each
node has K scheduler and K worker threads that run
concurrently, corresponding to the K application types.
Threads only communicate with other threads of their
own type.



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 9

In all our other simulations, we enforce the one-port
constraint for each scheduler thread. But for this PBC
heuristic, we have not enforced this constraint globally
across the schedulers, and a node may send as many as K
tasks concurrently, one of each type. Instead, we model
the contention on the port so the aggregate bandwidth
does not exceed the port’s limit (similarly, the node’s
processor can multitask between multiple tasks.) This
gives the PBC strategy an unfair advantage over the other
heuristics. In fact, it has been shown [21] that allowing
interruptible communication (which is similar to concur-
rent communication) dramatically reduces the amount of
buffer space needed to achieve optimal throughput.

E. Data-Centric Scheduling (DATA-CENTRIC)

This heuristic is our best attempt to design a de-
centralized, demand-driven algorithm that converges to
a solution of the linear program (1). The idea is to
start from the bandwidth-centric solution for the most
communication-intensive application and to progres-
sively trade some of these tasks for more computation-
intensive ones. Doing so yields better values for the
expected α

(k)
u and the expected sent(k)

u→v, which can in
turn be used in the demand-driven algorithm of Figure 3.
These frequencies are continuously recomputed so as
to cope with potential availability variations. The rest
of this subsection is devoted to details of the trading
operations. As we have explained in Section III-D, in
the optimal solution on trees, all applications have the
same throughput. So this heuristic starts from an initial
solution and updates the α

(k)
u until all throughputs are

close to each other.
We sort the task types by non-increasing

communication-to-computation ratios. We start the
algorithm using the pure bandwidth-centric approach
for tasks of type 1, but as the computation proceeds, a
node will find itself receiving a mix of different types
of tasks. To reduce the imbalance, the root iteratively
applies the four operations described below, in the
listed order of precedence. In the following, H (resp.
L) denotes the application that currently has the highest
(resp. lowest) throughput. As the root distributes all
tasks, H and L are easy to identify. Those operations
attempt to increase the number of tasks of type L that
are assigned, sometimes by reducing the number of
H’s.

Communication Trading Suppose H has a higher
communication-to-computation ratio than L (which is
the common case since we start with only tasks of type
1). Then if a child reports that it is not fully utilized
(either because its CPU is idle or because it cannot keep

up with the requests it receives from its own children
i.e.

∑
k α

(k)
u c(k) < cu or

∑
v∈Γ(u)

P
k sent(k)

u→v·b(k)

bv
= 1)

then the parent can substitute some tasks of type H by
sending them in place of some tasks of type L to the
under-utilized child. It should make the substitution in
a way that keeps the communication time the same (i.e.
in the ratio of b(L) H’s for b(H) L’s), and limited by the
number that would make the throughputs equal. Last, let
CPU denote the CPU computation time to execute all
tasks currently assigned to processor Pu. Then we have
CPU =

∑
k

α
(k)
u .c(k)

cu
, and we should not exceed the CPU

capacity after the update. Therefore α
(L)
u is increased

by εL and α
(H)
u is decreased by εH with the following

constraints:
εLb(L) = εHb(H)

0 6 α(L) + εL 6 α(H) − εH

CPU + εL
c(L)

cu
− εH

c(H)

cu
6 1

Hence, we get:

εH = min

(
α(H)−α(L)

1+ b(H)

b(L)

, 1−CPU
c(H)c(L)

b(L)cu

“
b(H)

c(H)−
b(L)

c(L)

”
)

.

Gap filling Suppose that some bandwidth from the
root is not used, and that a remote processor Pu could
receive more tasks of a low throughput application. This
step calculates εL, the possible additional number of
tasks of type L that this processor could handle. Let
CPU denote the CPU computation time to execute all
tasks currently assigned to processor Pu. Then we have
CPU =

∑
k

α
(k)
u .c(k)

cu
, and the following computation

limit on εL has to hold: CPU + εL
c(L)

cu
6 1. In

addition, there must be enough free bandwidth along the
path from the root node to Pu to send the additional
tasks; therefore, for any node i along this path, we can

define bus_occupation(p(i)) =
∑

k

∑
j

sent(k)
p(i)→j .b

(k)

bj
and

we need the following condition on εL to hold true:
bus_occupation(p(i)) + εL

b(L)

bi
6 1.

Lastly, to avoid over-reducing the imbalance between
α(H) and α(L), we add the following constraint:
α(H) > α(L) + εL. Therefore, we have:

εL = min
(

cu(1−CPU )
c(L) , α(H) − α(L),

mini ∈ path from
the root to Pu

(
bi(1−bus_occupation(p(i)))

b(L)

))
.

Bus de-saturation If the bus is saturated by tasks with
a high communication-to-computation ratio, we may
still be using only workers with high communication
capacity. However, the workload might still be increased
by using additional idle subtrees, i.e., the current tree
must be widened. Thus, we need to reduce the amount
of tasks of type H that are processed by the currently



10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

u

+εL

p(i)

i

(a) Gap Filling

Unused Nodeswith a small bandwidth.
Saturated Subtree for H

(b) Bus de-saturation

Fig. 4. Rebalancing operations

used subtrees. This heuristic takes the branch with the
smallest bandwidth that processes tasks of type H , and
scales down the α

(H)
i and sent(H)

i→j values of nodes on the
branch by 10 %. This operation allows us to decrease
the communication resource utilization and precedes the
next round of “Gap filling” operations.

Task trading on the root At some point it may be the
case that application H is processed only on the root
node. This heuristic will try to substitute εH tasks of
type H for εL tasks of type L at the root. To do so, we
need the following constraints: εH 6 α

(H)
root, α(H)−εH >

α(L) + εL and εL. c(L)

croot
= εH . c(H)

croot
. Therefore, we have

εH = min

(
α

(H)
root,

α(H) − α(L)

1 + c(H)

c(L)

)
and εL =

c(H)

c(L)
εH .

The preceeding operations are iteratively performed
(with the listed order of precedence) until we reach a
(tunable) balance, for example,

maxk

{
α(k)

}
−mink

{
α(k)

}
mink

{
α(k)

} < 0.05.

The above operations may appear to need global
knowledge about the tree. For example, it may seem
at first sight that when performing a “Gap filling”
operation, the master needs to know the path to its
remote descendant Pu. However, this operation in fact
simply amounts to computing a minimum along this
path, which can be done via a classical and efficient
distributed propagation mechanism. The same distributed
technique can be used for all other operations as they
only require information from immediate descendants in
a single subtree.

VI. SIMULATION RESULTS

A. Evaluation Methodology

1) Throughput Evaluation: It is not at all obvious
how to determine that a computation has entered steady-
state, and measuring throughput becomes even trickier
when the schedule is not periodic. We took a pragmatic,
heuristic approach for our experiments. Let T denote
the earliest time that all tasks of some application were
completed. Let N (k)(t) denote the number of tasks of
type k that were finished in time period [0, t]. We define
the achieved throughput ρk for application k by:

ρk =
N (k)((1− ε)T )−N (k)(εT )

(1− 2ε)T
, where ε ∈ [0, 0.5[.

The ε factor allows us to ignore the initial and final
instabilities (in practice, we set ε to be equal to 0.1). In
the following, we will refer to ρk as the experimental
throughput of application k as opposed to the expected
throughput that can be computed by solving the linear
program (1). Likewise, the minimum of the experimental
throughputs is called the experimental fair throughput.

2) Platform Generation: The platforms used in our
experiments are random trees described by two param-
eters: the number of nodes n and the maximum degree
degreemax. To generate the interconnection network
topology, we use a breadth-first algorithm (see [2] for
more details) in order to have wide (rather than deep
and narrow) trees. In our experiments, we generated a
total of 150 trees, ten trees each with 5, 10, 20, 50 and
100 nodes, and maximum degree 2, 5, or 15.

We assigned capacity, latency and CPU floating point
rate values on edges and nodes at random. Those values
come from real measurements (performed using tools
like pathchar) on machines spread across the Internet.
CPU rates ranged from 22.151 Mflops (an old Pentium
Pro 200MHz) to 171.667 Mflops (an Athlon 1800).
Bandwidth ranged from 110 kb/s to 7 Mb/s and latency
from 6 ms to 10 s. Note that in the SimGrid simula-
tor [3] which we are using, latency and link capacity are
limiting factors for determining the effective bandwidth
of a connection.

3) Application Generation: An application is mainly
characterized by its communication-to-computation ratio
(CCR). We used CCRmin = 0.001, which corresponds
to the computation-intensive task of multiplying two
3500 × 3500 matrices. We also set an upper bound
for CCR of 4.6, corresponding to the addition of two
such matrices. In choosing application types, we picked
CCRmax between 0.002 and 4.6, and then chose the
applications’ CCR’s to be evenly spaced in the range
[CCRmin,CCRmax]. For simplicity we take K to be 2
or 3.

4) Heuristic Implementation: The experiments were
performed using the SimGrid simulator [3], and the



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 11

values of ci and bi values were measured from within
the simulator (based on the node values input), and used
to make the decisions in the algorithms of Section V.

As explained in section V-E, the demand-driven al-
gorithms send requests (involving a few bytes) from
children to parents. Our simulations included the re-
quest mechanism, and we ensured that no deadlock
occurred in our thousands of experiments, even when
some load-variations occurred. Except where otherwise
noted, throughput evaluations were performed using 200
tasks per application. Note, that we carefully checked
by hand using a larger number of tasks (ten times
more tasks) that the smaller number we used for our
experiments was always sufficient to reach the steady-
state (the experimental throughput was within 1% for all
configurations when adding more tasks).

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Deviation from theoretical throughput

Fig. 5. Deviation of experimental fair throughput from expected
theoretical throughput (1 − Experimental fair throughput

Theoretical fair throughput ) for LP, DATA-
CENTRIC and CGBC

B. Case study

1) Theoretical versus Observed Throughput: For the
heuristics LP, DATA-CENTRIC and CGBC, we can eas-
ily compute the expected theoretical fair throughput as
they all rely on explicit rate computation. This allowed
us to explore how implementation issues result in the
experimentally obtained fair throughput differing from
the theoretical fair throughput. There are many reasons
that these quantities might differ, such as the overhead of
the request mechanism or a startup period longer than the
10% we allowed for. It turned out that the major cause
of inefficiency was the limit on the buffer size.

Our experiments assumed enough buffer space to
hold 10 tasks of any type. For this case, Figure 5
depicts the experimental fair throughput deviation from
the expected theoretical throughput for heuristics CGBC,
LP and DATA-CENTRIC. This deviation is computed as
1− Experimental fair throughput

Theoretical fair throughput . All three heuristics exhibited a
similar distribution, so they were combined in this figure.
The average deviation is equal to 9.426%. However,

when we increased the buffer size by a factor ten
(and increased the number of tasks per application to
2000), the mean average deviation dropped to 0.334%.
Even though the larger buffer size led to much better
throughput, we considered it unrealistic, and used size
10 in all other experiments.

2) Performance of Heuristics: Let us first compare
the relative performances of our five heuristics (FCFS,
PBC, CGBC, LP and DATA-CENTRIC). More precisely,
for each experimental setting (i.e. a given platform and a
given CCR interval), we compute the (natural) logarithm
of the ratio of the experimental fair throughput of LP
with the experimental fair throughput of a given heuristic
(applying a logarithm enables us to have a symmetrical
value). This value is called in the following logarithmic
deviation. Therefore, a positive value means that LP per-
formed better than the other heuristic. Figure 6 depicts
the histogram plots of these values.

First of all, we observe that most values are positive,
which illustrates the superiority of LP. Next, observe on
Figure 6(a) that DATA-CENTRIC is very close to LP
most of the time, despite the distributed computation of
the expected α

(k)
u and sent(k)

u→v values. However, the ge-
ometric average2 of these ratios is equal to 1.164, which
is slightly larger than the geometric average for CGBC
(1.156). The reason is that even though in most settings
DATA-CENTRIC ends up with a very good solution, in
a few instances it performed very badly (up to 16 times
worse than LP). In contrast, CGBC (see Figure 6(d)) is
much more stable since its worst performance is only
twice that of LP. Note that these failures happen on
any type of tree (small or large, narrow or wide) and
that the geometric averages of these two heuristics are
always very close to each other. We have also checked
that these failures are not due to an artifact of the
decentralized control of the scheduling by ensuring that
the theoretical throughput has the same behavior (i.e. the
bad behavior actually comes from the computation of the
expected α

(k)
u and sent(k)

u→v). We are still investigating the
reasons that DATA-CENTRIC fails on some instances,
and suspect that it is due to the use of the (sometimes
misleading) intuition of Proposition 1. Indeed, in this
heuristic, applications with a high communication-to-
computation ratio are performed mainly on the subtrees
with the best bandwidths at the root while applications
with a low communication-to-computation are performed
primarily on the subtrees with the worst bandwidths at
the root, which is definitely not optimal on particular

2It is a well-known fact [33] that arithmetic average of ratios can
lead to contradictory conclusions when changing the reference point.
Therefore, we use a geometric average of ratios which is known to
be closer to the common idea of average ratio.



12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

Fr
eq

ue
nc

y

Logarithmic deviation from LP heuristic

DATA-CENTRIC

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

(a) Performances of DATA-CENTRIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

Fr
eq

ue
nc

y

Logarithmic deviation from LP heuristic

FCFS

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

(b) Performances of FCFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

Fr
eq

ue
nc

y

Logarithmic deviation from LP heuristic

PBC

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

(c) Performances of PBC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

Fr
eq

ue
nc

y

Logarithmic deviation from LP heuristic

CGBC

0
0.01
0.02
0.03
0.04
0.05

0 0.5 1 1.5 2 2.5 3

(d) Performances of CGBC

Fig. 6. Logarithmic deviation from LP performances (ln
“

mink α(k)for LP
mink α(k)for other heuristic

”
).

instances.
Unsurprisingly, PBC leads to very bad results. In

many situations (more than 35%), an application has
been particularly unfavored and the fair experimental
throughput was close to 0. The logarithm of the deviation
for these situations has been normalized to 8. These
poor results advocate the need for fairness guarantees
in distributed computing environments like the ones we
consider. As a matter of fact, this is somehow similar
to the Bushel of AppLeS problem [34]: all applications
identify the same resources as “best” for their tasks and
seek to use them at the same time, thus making them no
longer optimal or available.

Lastly, the geometrical average of FCFS is 1.564 and
in the worst case, its performance is more than 8 times
worse than LP. On the average, FCFS is therefore much
worse than LP. On small platforms, the performances
for FCFS and CGBC have the same order of magnitude.
However, on larger ones (50 and 100 workers), CGBC

performs much better (geometrical average equal to
1.243) than FCFS (geometrical average equal to 2.0399).

VII. CONCLUSION

In this paper, we presented several heuristics for
scheduling multiple Bag of Tasks applications on a tree-
connected platform composed of heterogeneous process-
ing and communication resources. Our contributions to
this problem are the following:
• We outlined a theoretical scheduling model for Bag

of Tasks applications scheduling environments with
a particular emphasis on the fairness issue.

• We presented a centralized algorithm which, given
the performance of all resources, computes an opti-
mal schedule with respect to throughput maximiza-
tion for tree networks. We also have characterized
optimal solution on single-level trees.

• Since centralized algorithms may be unrealistic
on large-scale platforms, we then presented sev-



BEAUMONT et al.: CENTRALIZED VERSUS DISTRIBUTED SCHEDULERS FOR MULTIPLE BAG-OF-TASKS APPLICATIONS 13

eral distributed algorithms based on decentralized
heuristics.

• We evaluated the efficacy of these heuristics using a
wide range of realistic simulation scenarios, using
limited buffer space. The results obtained by the
most sophisticated heuristics are quite reasonable
compared to the optimal centralized algorithm.

The experimental analysis provided in this article is
an average-case analysis on small data-sets. It would be
certainly be instructive to perform a worst-case analysis
for the previous heuristics. In particular, we conjecture
that it should be possible to establish a performance guar-
antee (an approximation factor) for CGBC and FCFS.
However, we believe that DATA-CENTRIC and PBC are
much harder to analyze.

We have seen with the PBC heuristic that non-
cooperative approaches, where each application opti-
mizes its own throughput, lead to a particularly unfair
Nash equilibrium [35]. This Nash Equilibrium has been
recently analytically studied in a multi-port context [36].
Extending this work to a single-port setting seems very
challenging.

Another approach could be a cooperative approach
where several decision makers (each of them being
responsible for a given application) cooperate in making
the decisions such that each of them will operate at its
optimum. This situation can be modeled as a cooperative
game like in [37] where this approach is successfully
used for simpler problems such as bandwidth sharing
in networks and another fairness criteria (proportional
fairness). In particular, fully distributed protocols achiev-
ing proportionaly fair allocations have been proposed.
However in our situation, hierarchical resource sharing
is rather hard to model, which renders such an approach
quite challenging.

Acknowledgements

The authors would like to thank the reviewers for their
detailed comments and suggestions which greatly helped
us to improve the paper.

REFERENCES

[1] “Berkeley Open Infrastructure for Network Computing,” http:
//boinc.berkeley.edu.

[2] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal,
and Y. Robert, “Scheduling multiple bags of tasks on hetero-
geneous master-worker platforms: centralized versus distributed
solutions,” LIP, Tech. Rep. 2005-45, Sept. 2005.

[3] A. Legrand, L. Marchal, and H. Casanova, “Scheduling Dis-
tributed Applications: The SIMGRID Simulation Framework,”
in Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’03), May 2003.

[4] SETI, URL: http://setiathome.ssl.berkeley.edu.

[5] J. Cowie, B. Dodson, R.-M. Elkenbracht-Huizing, A. K.
Lenstra, P. L. Montgomery, and J. Zayer, “A world wide number
field sieve factoring record: on to 512 bits,” in Advances in
Cryptology - Asiacrypt ’96, ser. LNCS, K. Kim and T. Mat-
sumoto, Eds., vol. 1163. Springer Verlag, 1996, pp. 382–394.

[6] Prime, URL: http://www.mersenne.org.
[7] Entropia, URL: http://www.entropia.com.
[8] M. Litzkow, M. Livny, and M. W. Mutka, “Condor - A hunter

of idle workstations,” in Proceedings of the 8th International
Conference of Distributed Computing Systems. IEEE Computer
Society Press, 1988, pp. 104–111.

[9] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faer-
man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao,
S. Smallen, N. Spring, A. Su, and D. Zagorodnov, “Adaptive
computing on the grid using AppLeS,” IEEE Trans. Parallel
Distributed Systems, vol. 14, no. 4, pp. 369–382, 2003.

[10] H. Casanova and F. Berman, “Grid’2002,” in Parameter sweeps
on the grid with APST, F. Berman, G. Fox, and T. Hey, Eds.
Wiley, 2002.

[11] J. Frey, T. Tannenbaum, I. Foster, M. Livny, , and S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids,” in Proceedings of the Tenth IEEE Sympo-
sium on High Performance Distributed Computing (HPDC10).
IEEE Computer Society Press, Aug. 2001.

[12] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro,
J. Sauvé, F. A. B. da Silva, C. O. Barros, and C. Silveira,
“Running Bag-of-Tasks Applications on Computational Grids:
The MyGrid Approach,” in Proceedings of the ICCP’2003 -
International Conference on Parallel Processing, Oct. 2003.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability,
a Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[14] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, Scheduling and
load balancing in parallel and distributed systems. IEEE
Computer Science Press, 1995.

[15] P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu,
Eds., Scheduling Theory and its Applications. John Wiley and
Sons, 1995.

[16] D. Bertsimas and D. Gamarnik, “Asymptotically optimal algo-
rithm for job shop scheduling and packet routing,” Journal of
Algorithms, vol. 33, no. 2, pp. 296–318, 1999.

[17] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Steady-
state scheduling on heterogeneous clusters,” Int. J. of Founda-
tions of Computer Science, vol. 16, no. 2, pp. 163–194, 2005.

[18] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert,
“Bandwidth-centric allocation of independent tasks on hetero-
geneous platforms,” in International Parallel and Distributed
Processing Symposium (IPDPS’2002). IEEE Computer Society
Press, 2002.

[19] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand,
and Y. Robert, “Scheduling strategies for master-slave tasking
on heterogeneous processor platforms,” IEEE Trans. Parallel
Distributed Systems, vol. 15, no. 4, pp. 319–330, 2004.

[20] B. Kreaseck, “Dynamic autonomous scheduling on heteroge-
neous systems,” Ph.D. dissertation, University of California, San
Diego, 2003.

[21] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck,
“Autonomous protocols for bandwidth-centric scheduling of
independent-task applications,” in International Parallel and
Distributed Processing Symposium IPDPS’2003. IEEE Com-
puter Society Press, 2003.

[22] B. Hong and V. Prasanna, “Distributed adaptive task alloca-
tion in heterogeneous computing environments to maximize
throughput,” in International Parallel and Distributed Process-
ing Symposium IPDPS’2004. IEEE Computer Society Press,
2004.



14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?, NO. ?, MAY 2007

[23] M. Mowbrayy, F. Brasileiroz, N. Andradez, J. Santanaz, and
W. Cirnez, “Reciprocation-based economy for multiple services
in peer-to-peer grids,” in Sixth IEEE International Conference
on Peer-to-Peer Computing. IEEE Computer Society Press,
Sept. 2006.

[24] T. Bonald and L. Massoulié, “Impact of fairness on internet
performance,” in SIGMETRICS/Performance, 2001, pp. 82–91.

[25] L. Massoulié and J. Roberts, “Bandwidth sharing: Objectives
and algorithms,” Transactions on Networking, vol. 10, no. 3,
pp. 320–328, june 2002.

[26] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient col-
lective communication in distributed heterogeneous systems,”
in ICDCS’99 19th International Conference on Distributed
Computing Systems. IEEE Computer Society Press, 1999, pp.
15–24.

[27] ——, “Efficient collective communication in distributed hetero-
geneous systems,” Journal of Parallel and Distributed Comput-
ing, vol. 63, pp. 251–263, 2003.

[28] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Pipelin-
ing broadcasts on heterogeneous platforms,” IEEE Trans. Par-
allel Distributed Systems, vol. 16, no. 4, pp. 300–313, 2005.

[29] O. Beaumont and L. Marchal, “Pipelining broadcasts on hetero-
geneous platforms under the one-port model,” LIP, ENS Lyon,
France, Research Report RR-2004-36, July 2004.

[30] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall,
1987.

[31] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Inde-
pendent and divisible tasks scheduling on heterogeneous star-
schaped platforms with limited memory,” in PDP’2005, 13th
Euromicro Workshop on Parallel, Distributed and Network-
based Processing. IEEE Computer Society Press, 2005, pp.
179–186.

[32] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert,
“A proposal for a heterogeneous cluster ScaLAPACK (dense
linear solvers),” IEEE Trans. Computers, vol. 50, no. 10, pp.
1052–1070, 2001.

[33] R. Jay, The Art of Computer Systems Performance Analysis :
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. John Wiley and Sons, Inc., 1991.

[34] F. Berman and R. Wolski, “TheAppLeS project: A status
report,” in Proceedings of the 8th NEC Research Sympo-
sium, 1997, available at http://www.gcl.ucsd.edu//hetpubs.html#
AppLeS.

[35] J. F. Nash, “Equilibrium points in n-person games,” Proceedings
of the National Academy of Sciences USA, vol. 36, pp. 48–49,
1950.

[36] A. Legrand and C. Touati, “Non-cooperative scheduling of
multiple bag-of-task appplications,” in Proceedings of the 25th
Conference on Computer Communications (INFOCOM’07),
2007.

[37] H. Yaïche, R. R. Mazumdar, and C. Rosenberg, “A game
theoretic framework for bandwidth allocation and pricing in
broadband networks,” IEEE/ACM Transactions on Networking,
vol. 8, no. 5, pp. 667–678, 2000.

Olivier Beaumont received the PhD degree
from the Université de Rennes in January
1999. He is currently an associate professor in
the LaBRI laboratory in Bordeaux. His main
research interests are parallel algorithms on
distributed memory architectures.

Larry Carter received the AB degree from
Dartmouth College in 1969 and the PhD de-
gree in mathematics from the University of
California at Berkeley in 1974. He worked
at as a research staff member and manager
at IBM’s T.J. Watson Research Center for
nearly 20 years in the areas of probabilis-
tic algorithms, compilers, VLSI testing, and
high-performance computation. Since 1994,

Dr. Carter has been a professor in the Computer Science and
Engineering Department of the University of California at San Diego.
Between 1996 and 2000, he served as vice chair and then chair
of the department. His current research interests include scientific
computation, performance programming, parallel computation, and
computer architecture. Prof. Carter is a senior fellow at the San Diego
Supercomputing Center and a fellow of the IEEE.

Jeanne Ferrante received the PhD degree in
mathematics from MIT in 1974. She was a
research staff member at the IBM T.J. Wat-
son Research Center from 1978 to 1994, and
currently is a professor of computer science
and associate dean of the Jacobs School of En-
gineering at the University of California, San
Diego. Her work has included the development
of intermediate representations for optimizing

and parallelizing compilers, most notably the Program Dependence
Graph and Static Single Assignment form. Her interests also include
optimizing for parallelism and memory hierarchy and scheduling on
large distributed platforms. She is a fellow of the ACM and a senior
member of the IEEE.

Arnaud Legrand received the PhD degree
from Ecole normale supérieure de Lyon in
2003. He is currently a CNRS researcher at
the LIG Laboratory. He is mainly interested
in parallel algorithm design for heterogeneous
platforms and in scheduling techniques.

Loris Marchal received the PhD degree from
Ecole normale supérieure de Lyon in 2006. He
is currently a CNRS researcher at the LIP Lab-
oratory at ENS Lyon. He is mainly interested
in communication optimization on heteroge-
neous platforms and in scheduling techniques.

Yves Robert received the PhD degree from
Institut National Polytechnique de Grenoble in
January 1986. He is currently a full professor
in the Computer Science Laboratory LIP at
ENS Lyon. He is the author of four books, 80
papers published in international journals, and
100 papers published in international confer-
ences. His main research interests are schedul-
ing techniques and parallel algorithms for clus-

ters and grids. He is a member of ACM and IEEE, and serves as an
associate editor of IEEE Transactions on Parallel and Distributed
Systems.


