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Abstract

The Computational Grid provides a promising plat-
form for the eÆcient execution of parameter sweep ap-
plications over very large p arameter spaces. Sche duling
such applications is challenging because target resour ces
are heter ogene ous,because their load and availability
varies dynamically, and because independent tasks may
share common data �les. In this p ap er, we prop ose an
adaptive scheduling algorithm for parameter sweep ap-
plications on the Grid. We modify standard heuristics
for task/host assignment in perfectly predictable envi-
ronments (Max-min, Min-min, Su�erage), and we pro-
pose an extension of Su�erage c alledXSu�erage. Using
simulation, we demonstrate that XSu�erage can take
advantage of �le sharing to achieve better p erformance
than the other heuristics. We also study the impact of
inac cur ate p erformance prediction on sche duling. Our
study shows that: (i) di�er entheuristics behave dif-
ferently when predictions are inac cur ate; (ii) increased
adaptivity leads to b etter p erformance.

1. Introduction

Fast net w orksmake it possible to aggregate CPU,
net w orkand storage resources in to Computational
Grids [8]. Suc hen vironments can be used e�ectively
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to support very large-scale runs of distributed appli-
cations. An ideal class of applications for the Grid is
the class of parameter sweep applications, applications
structured as a set of multiple "experiments", each of
which is executed with a distinct set of parameters.

Executing a parameter sweep on the Grid involv es
the assignment of tasks to resources. Although the
experiments (or tasks) of a parameter sw eepapplica-
tion are independent, a n umber of issues make schedul-
ing suc h applications challenging. First, resources in
the Grid are typically shar ed so that the con ten tion
created by multiple applications creates dynamically
uctuating dela ys and qualities of service. In addi-
tion, Grid resources are heter ogene ousand may not
perform similarly for the same application. Moreover,
although parameter sweep tasks are independent, they
may share common input �les which reside at remote
locations, hence the performance-eÆcient assignment
and scheduling of the application must include con-
sideration of the impact of data transfer times. Previ-
ous work [3] has demonstrated that run-time, adaptive,
application-scheduling based on dynamic information
about the status of computing resources is a good gen-
eral approach for achieving performance on the Grid.

In [20 ], three heuristics (Max-min, Min-min and
Su�erage) were proposed for the scheduling of indepen-
den ttasks in single-user, homogeneous environments.
In this paper, we modify existing heuristics to
schedule parameter sweep applications with �le
I/O requirements, we propose an extended ver-
sion of Su�erage, XSu�erage, and we study the
impact of inaccurate performance prediction on
scheduling. We integrate these heuristics into a gen-
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eral adaptive scheduling algorithm and compare them
in various simulated computing environments and for
various application scenarios. We will use a standard
performance metric to evaluate our heuristics: the ap-
plication makespan [22], i.e. the time between the �rst
input �les is sent to a computational server and the last
output �le is returned to the user. Our ultimate goal is
to include our adaptive scheduling algorithm in a soft-
ware framework, a Parameter Sweep Template (PST),
developed as part of the AppLeS project [13]. PST will
be the subject a a future paper.

In a Grid environment it is usually diÆcult to obtain
accurate predictions for computing and networking re-
source performance; moreover most scheduling heuris-
tics make use of such predictions. We designed a simu-
lator that allows us to experiment with di�erent levels
of performance prediction accuracy. In this paper we
present a preliminary study of the e�ect of increasing
inaccuracy on the heuristics under consideration and
discuss how adaptivity can be used to promote perfor-
mance in Grid environments.

This paper is organized as follows. In Section 2,
we present our models for both the application and
the underlying Grid environment. In Section 3, we
present our scheduling algorithm. Section 4 focuses on
the di�erent task/host assignment heuristics whereas
Sections 5 discusses adaptivity and performance pre-
diction accuracy. Section 7 references related research
work, and Section 8 concludes the paper.

2. A Scheduling Model for Parameter
Sweeps on the Grid

2.1. Application Model

We de�ne a parameter sweep application as a set
of n independent sequential tasks fTigi=1;::;n. By inde-
pendent we mean that there are no inter-task commu-
nications or data dependencies (i.e. task precedences).
We assume that the input to each task is a set of �les
and that a single �le might be input to more than one
task. In our model, without loss of generality, each
task produces exactly one output �le. Figure 1 shows
an example with input �le sharing among tasks. We
assume that the size of each input and output �le is
known a-priori.

This model is motivated by our primary target appli-
cation for PST: MCell [29], a micro-physiology applica-
tion that uses 3-D Monte-Carlo simulation techniques
to study molecular bio-chemical interactions within liv-
ing cells. An MCell run is composed of multiple Monte-
Carlo simulations for cell regions whose geometries are
described in (potentially very large) �les. For instance,
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Figure 1. Application Model

MCell can be used to study the trajectories of neuro-
transmitters in the 3-D space between two cell mem-
branes for di�erent deformations of the membranes,
where each deformation is described in a geometry �le.
Additional �les of variable sizes are also needed for de-
scribing the initial locations of di�erent molecules. The
model described above is adequate for our purpose and
should be general enough to accommodate other appli-
cations (e.g. general Monte-Carlo simulations).

MCell users and developers anticipate large-scale
runs that contain tens of thousands of tasks with each
task processing hundreds of MBytes of input and out-
put data, with various task-�le usage patterns. Fur-
thermore, research work outside the scope of this paper
addresses the question of steerable MCell runs when
users can add new tasks on-the-y, and modify the
computational targets of existing tasks. Such runs will
lead to fairly intricate task-�le usage patterns and a
model as general as the one we describe will be needed
to study scheduling issues in the presence of computa-
tional steering.

2.2. Grid Model

We assume that the Computational Grid available
to the user has the following topology: it is a set of
k clusters of computing resources fCjgj=1;::;k that are
accessible to the user via k distinct network links. This
is a logical topology, and this work does not attempt to
take into account the actual physical network topology
of the Grid. Our intent is to model a wide-area sys-
tem, such as a Worldwide Flock of Condors [24] for in-
stance. Each cluster contains a certain number of hosts
where a host can be any computing platform, from a
single-processor workstation to an MPP system, and
is available for computation. From now on, we call
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Figure 2. Environment Models

both hosts and network links resources. We do not im-
pose any constraint on the performance characteristics
of the resources and our simulator allows for arbitrary
performance variation. The only requirement is that
for each computation and �le transfer, an estimate of
running time is available. On interactive hosts, the
estimate is the task execution time whereas on batch
resources, it is the turnaround time (de�ned as the
waiting time plus the execution time). Such estimates
can be provided by the user, computed from analytical
models or historical information, or provided by facili-
ties such as the Network Weather Service (NWS) [31],
ENV [28], Remos [19], Grid services such as those found
in Globus [10], or computed from a combination of the
above. Recent work shows that the accuracy of the per-
formance estimates have an impact on the e�ectiveness
of scheduling heuristics and that information about the
probability distribution of the estimates should be ex-
ploited for scheduling [18, 26]. We explore scenarios for
di�erent levels of estimate accuracy in Section 5.

We assume that a storage facility (e.g. NFS,
GASS [9], IBP [23]) is available at each cluster so that
�les can be shared among the processes running on dif-
ferent hosts in the cluster. For the �rst implementation
of PST, we are planning to use IBP for storage man-
agement. Figure 2 shows an example of a Grid of a
Grid with three clusters. In this work we assume that
all input �les are initially stored on the user's host,
that all output �les must be returned to this location,
and that there are no inter-cluster �le exchanges. We
assume for now that once assigned, tasks do not mi-
grate between resources. This scenario �ts the current
usage of several real-life, parameter sweep applications
(e.g. MCell, INS2D [25]), and we leave alternate usage
scenarios for future work. In this work we ignore pos-
sible storage constraints and assume unlimited storage
space. Our model assumptions are discussed in the fol-

lowing section, but we believe that they make it possi-
ble to obtain initial meaningful results about a realistic
environment while keeping the simulation tractable.

2.3. Model Discussion

Our Grid model makes several simplifying assump-
tions. Even though we allow network links to have ar-
bitrary dynamic performance characteristics, we do not
model network contention caused by the application it-
self. Instead we view the network as a set of distinct
links emanating from the user's host and that can all be
used in parallel. We believe that this assumption will
need to be relaxed in future work. Since our purpose is
not simulation per se, we will aim at using simulators
developed by other research groups. For instance, the
Micro-Grids simulator [15], when it becomes available,
will allow us to precisely simulate network contention
and study its impact on our current results.

Similarly, we do not take into account contention
within a cluster for shared �le access. Our justi�ca-
tion is that wide-area �le transfer cost dominate the
cost of �le access within the cluster, even in the pres-
ence of contention. While this is true in certain envi-
ronments, it is certainly not general and we will need
to enhance our own simulator so that it can simulate
model contention for shared storage. For instance, this
will be necessary to simulate high-bandwidth wide-area
research networks such as the vBNS. At the moment
we are planning to deploy the PST software on non-
dedicated commercial wide-area networks with many
clusters and we believe our simulation results will hold
in those environments. The assumption of unlimited
storage is realistic for current runs of MCell on our
current testbed, but that assumption will be relaxed in
future versions of our scheduling algorithm.

Our Grid model also assumes that there are no di-
rect network links between clusters in the sense that
�le transfers cannot be performed by our scheduling
algorithm between clusters. In other words, the only
authoritative source of input �les is the user's host.
This prevents schedulers from making some optimiza-
tions when disseminating input �les among the clus-
ters. However, no heuristic we study in this paper is
able to support such optimizations as this would re-
quire a considerably more precise understanding of the
network. Our next step in this research will be to use
a more complete network model and to consider any
storage device for any �le retrieval. This will allow not
only for more exible application scenarios, but also
for the investigation of more sophisticated scheduling
algorithms.
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Figure 3. Scheduling Algorithm Skeleton

3. Adaptive Scheduling for
Parameter Sweeps

3.1. The Scheduling Algorithm

We call our scheduling algorithm schedule(). The
general strategy is that it takes into account resource
performance estimates to generate a plan for the assign-
ing �le transfers to network links and tasks to hosts.
To account for the Grid's dynamic nature, schedule()
can be called repeatedly so that the schedule can be
modi�ed and re�ned. We denote the points in time
at which schedule() is called scheduling events, ac-
cording to the terminology in [20]. We assume that at
each scheduling event our scheduler has knowledge of:
(i) the current topology of the Grid (number of clus-
ters, number of hosts in those clusters, network and
CPU loads), (ii) the number and location of copies of
all input �les, and (iii) the list of computations and �le
transfers currently underway or already completed.

Figure 3 shows the general skeleton for schedule()
whose steps can be described as follows:

(1) determines the time of the next scheduling event.
This can take into account environment behavior
to increase or decrease the scheduling event fre-
quency. A higher frequency means a higher adap-
tivity but also a higher scheduling cost.

(2) creates a Gantt chart [7], G, that will be used to
keep track of task/host assignments. G contains
as many columns as resources. Figure 4 shows
an example of a Gantt chart for an environment
containing two clusters with respectively two and
three hosts.

(3) inserts slots corresponding to tasks that are cur-
rently running into the chart. Two examples are
shown on Figure 4 as black-�lled rectangular slots
at the beginning of the chart (one �le transfer and
one computation).

(4) performs a task-space reduction that can be used
to reduce schedule()'s execution time. This will
be necessary for runs of real parameter sweep ap-
plications since we expect them to contain thou-
sands of tasks.

(5) is the core of the algorithm, determining which
task should be performed on which host. This
step is detailed in Section 4. Examples of slot as-
signments are depicted on Figure 4 in gray. In this
example, input �le transfers are scheduled on the
network link to cluster 2, the computation is then
scheduled on a host within that cluster, and the
output �le is scheduled to be returned to the user's
host.

(6) converts the Gantt chart into a plan, or a sequence
of instructions. These instructions can then pro-
vide a schedule for deployment with Grid software
services (for job submission and monitoring, data
motion, etc.).

3.2. Discussion

Several steps of our scheduling algorithm can be im-
plemented independently and this makes it possible
to experiment with di�erent techniques and strategies.
Our ultimate goal is to instantiate the algorithm so
that it is optimized for speci�c environments and ap-
plications. Furthermore, this instantiation should be
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Figure 4. Sample Gantt chart

as dynamic and automatic as possible as the algorithm
should be able to recon�gure itself on-the-y to accom-
modate changing Grid conditions.

Step (1) allows for dynamic adjustment of the
scheduling event frequency. A higher frequency leads to
more adaptivity and should be better for unstable Grid
environments. However, a higher frequency also means
that schedule() is called more frequently. Depending
on the computational cost of the scheduling, a high fre-
quency might not be desirable. In the case of the PST
software, a processor is usually dedicated to scheduling.
Furthermore, given the granularity of the applications
we are considering, there should be no need for very
high frequencies. However, steps (3) and (5) might in-
clude remote access to Grid information services (e.g.
NWS [31]) to perform performance prediction. It may
then become necessary to reduce the scheduling event
frequency because of latencies associated with Grid ser-
vices. One can envision algorithms to dynamically tune
the frequency in step (1). For instance, one could com-
pute the deviation of the computation from what was
planned during the previous call to schedule(). Large
deviations suggest higher frequencies whereas low de-
viations suggest that the frequency can be decreased.

Step (3) obtains estimates for completion of ongoing
�le transfers and computations in order to start �lling
in slots in the Gantt chart. This is a little di�erent
from estimating just running times because more infor-
mation is available. It is indeed conceivable that more
precise forecasting techniques can be used because the
required prediction is in the near future and because
there are ways to compute percentage to completion.
It may be that applications provides means to check on
computation progress (this is however not the case for
MCell). More generally, techniques using historical in-

formation from Grid services can lead to estimations of
the percentage to completion. We have started exper-
imenting with such techniques and will present results
in a subsequent paper.

Step (5) in Figure 3 states that tasks are assigned
to hosts until "enough" work has been assigned. Like
step (4), this is intended to limit the time spent com-
puting the schedule. Indeed, it makes little sense to
assign tasks to hosts for times that are well beyond
the next scheduling event since the schedule will be re-
evaluated then. Since real runs will not be perfectly
predictable, it is good practice to leave some margin of
error and assign work until after the next scheduling
event so that resources are utilized even if the perfor-
mance predictions were pessimistic.

Step (6) processes the Gantt chart and transforms it
into a set of task lists associated to each resource. The
Grid infrastructure software in use is then responsible
for sequencing �le transfers and computations on the
appropriate resources. Here there is some latitude for
some choices concerning the actual implementation of
the task sequencing. It may be that, due to unexpected
performance misprediction, some resource cannot exe-
cute the next task on its list but could execute one
of the subsequent ones. For instance, a �le transfer for
the output of a task that is unexpectedly lagging might
cause a network link to stay unused. A solution is to
relax the ordering of the list and allow subsequent �le
transfers to be performed immediately.

Our experience indicates that allowing output �le
transfers to be delayed until they can e�ectively occur
is usually a good idea as it allows for better network
bandwidth utilization while not disrupting the overall
schedule to a great extent. This is the scheme used by
schedule() in this paper. Further experiments would
be required in order to investigate the trade-o�s be-
tween resource utilization and schedule disruption.

Steps (1) and (5) use dynamic information about
the status of the Grid resources and are key to the al-
gorithm eÆcacy. Our main focus in this paper is
step (5) of the algorithm and our results are pre-
sented in the following section. We also present pre-
liminary experiments concerning step (1) in Section 5.

4. Performing Task/Host Assignment
Decisions

4.1. Heuristics

We must identify heuristics that are applicable in
Grid environments to perform assignment of �le trans-
fers to network links and of computations to hosts.



Moreover these heuristics must be reasonably compu-
tationally inexpensive with respect to the duration of
a typical application task. Three simple heuristics for
scheduling independent tasks for a uniform single-user
environment are proposed in [17, 20]: Min-min, Max-
min, and Su�erage. These three heuristics iteratively
assign tasks to processors by considering all tasks not
scheduled and computing Minimum Completion Times
(MCTs). For each task, this is done by tentatively
scheduling it to each resource, estimating the task's
completion time, and computing the minimum com-
pletion time over all resources. For each task, a metric
is computed using these MCTs, and the task with the
"best" metric is assigned to the resource that lets it
achieve its MCT. The process is then repeated until all
tasks have been scheduled.

Min-min uses the MinimumMCT as a metric, mean-
ing that the task that can be complete the earliest
is given priority. The motivation behind Min-min is
that assigning tasks to hosts that will execute them
the fastest will lead to an overall reduced makespan.
Max-min's metric is the Maximum MCT. The expecta-
tion is to overlap long-running tasks with short-running
ones. The rationale behind Su�erage is that a host
should be assigned to the task that would \su�er" the
most if not assigned to that host. For each task, its
su�erage value is de�ned as the di�erence between its
best MCT and its second-best MCT. Tasks with high
su�erage value take precedence. Note that this def-
inition of su�erage is a little di�erent from the one
presented in [20]. We found our de�nition easier to
implement and experiments showed no di�erences be-
tween our version of su�erage and the one in [20]. We
modi�ed all three heuristics so that they (i) include
input and output data transfer times when computing
MCTs and (ii) take into account the fact that some �les
may already be present on remote storage devices. In
addition, we implemented an extended version of the
Su�erage heuristic: XSu�erage.

In XSu�erage the su�erage value is computed not
with MCTs, but with cluster-level MCTs, i.e. by com-
puting the minimum MCTs over all hosts in each clus-
ter. Our �rst intuition was that Su�erage should be a
nice way to exploit �le locality issues without any a-
priori analysis of the task-�le dependence pattern. The
idea is that if a �le required by some task is already
present at a remote cluster, that task would "su�er"
if not assigned to a host in that cluster, provided the
�le is large compared to the available bandwidth on
the cluster's network link. The su�erage value would
then be a simple way of capturing such situations and
ensuring maximum �le re-use. This is somewhat rem-
iniscent of the idea of task/host aÆnities introduced

in [20], where some hosts are better for some tasks but
not for others.

However that early experiments showed that the
Su�erage heuristic as described above does not lead
to makespans as good as the ones we expected. This
can be explained easily. Assume that a task, say T0,
requires a large input �le that is already stored on a
remote cluster. If that cluster contains two (or more)
hosts with nearly identical performance, which is often
the case in practice, then both those hosts can achieve
nearly the same MCT for that task. If the �le is of
signi�cant size compared to network bandwidths avail-
able, then it is likely that those two hosts lead to the
best and second-best MCTs for T0. This means that
the su�erage value will be close to zero, giving the task
low priority. Other tasks may be scheduled in its place,
generate load on the hosts in the cluster, and eventually
force T0 to be scheduled on some other cluster, thereby
requiring an additional �le transfer. This can have a
dramatic impact on the overall application makespan
as it leads to poor �le re-use among tasks, especially in
wide-area bandwidth-constrained environments.

We solved this problem in XSu�erage by using a
modi�ed su�erage value de�nition. For each task and
for each cluster we compute the task's MCT only for
hosts in the given cluster and call that value the cluster-
level MCT. The cluster-level su�erage value is com-
puted as the di�erence between the best and second-
best cluster-level MCT. The task with the highest
cluster-level su�erage is given priority and is sched-
uled to the host that achieves the earliest MCT within
the cluster that achieves the earliest cluster-level MCT.
Appendix 8 gives formal descriptions of Max-min, Min-
min, Su�erage, and XSu�erage.

4.2. Simulating Parameter Sweeps
in Grid Environments

In order to evaluate the eÆcacy of the heuristics de-
scribed earlier we developed a Grid parameter sweep
simulator. At present, little software is available for
Grid simulation. Among the most promising work,
the Bricks project [30] addresses the question of simu-
lating heterogeneous distributed environment for the
purpose of evaluating scheduling strategies, but no
public implementation is available at the moment.
Furthermore, Bricks targets "global computing sys-
tems" [5, 27, 11, 10] rather than application sched-
ulers. It assumes constant task and data arrival rates
to servers and uses queuing theory in an attempt to
model many users who asynchronously interact with a
global computing system. By contrast, our simulator
is purely event-driven which is more appropriate in our



framework where the scheduler knows all tasks a-priori
and is in charge of only one application. The Micro-
Grids [15] project will also be of interest for gaining
insight on how our simulation results hold under more
realistic assumptions. At present, it cannot be used
to perform large numbers of runs of large-scale appli-
cations as it emulates the Grid rather than simulates
runs of the application. However, Micro-Grids uses a
network simulator that could help us model network
traÆc more accurately by taking into account physi-
cal network topology and link contention due to that
topology.

Our simulator allows us to compare heuristics un-
der the same load conditions, in a reproducible man-
ner, for a wide variety of system states and application
scenarios. In addition, we veri�ed the accuracy of our
simulated results by comparing experimental runs in
shared, production environments with similarly loaded
simulation application execution times. Our simula-
tor takes as input schedule(), a task/host assign-
ment heuristic, a description of the application tasks
and input/output �les, and a description of the Grid
topology with performance characteristics of Grid re-
sources. These characteristics can be constant values,
samples from random distributions, or traces from the
NWS [31]. In this work we use only NWS traces as
they lead to more realistic models. The simulator also
allows for adding and removing resources dynamically,
but we do not perform any experiments with transient
resources in this paper. The output of the simulator is
a makespan value based on the set of input parameters.
More details on the simulator can be found in [6].

4.3. Simulation Results

4.3.1. Random Grids and Applications

In order to perform a fair comparison of task/host se-
lection heuristics we generated 1000 simulated Grids
and 2000 simulated applications. We then randomly
picked Grid/application pairs among the 2,000,000 pos-
sible, and ran our simulator for each pair with all
heuristics. The simulations in this section assume 100%
accurate performance estimation and scheduling events
occur every 500 seconds. The expectation is that com-
puting statistical characteristics of makespans achieved
by each heuristic is representative if the sample size is
large enough, that is if enough Grid/application pairs
are simulated. Before presenting the results, let us de-
scribe how Grids and applications were generated.

In what follows we denote by U(x; y) the discrete
integer uniform probability distribution on the interval
[x; y] where x and y are integers. Each Grid contains
a U(2; 12) number of clusters and each of those clus-

ters contains a U(2; 32) number of hosts. The perfor-
mance of each host is modeled by a CPU load trace
randomly picked among 50 di�erent actual traces ob-
tained from the NWS for various hosts. Each trace is
then shifted by a random o�set, so that two hosts using
the same CPU trace do not exhibit the same behavior
at the same time. Similarly network link performance
is modeled by randomly picking latency/bandwidth
traces among 20 di�erent NWS traces. All the NWS
traces that we use for simulations in this paper typi-
cally span 4 days of real time and were obtained for
hosts in various US research institutions and for net-
work links between these institutions (commercial In-
ternet or vBNS). Traces were collected during the �rst
week of November 1999.

In accordance with typical MCell scenarios we gen-
erate applications as sets of independent Monte-Carlo
simulations, with the tasks of a simulation sharing a
(potentially large) input data �le for describing 3-D
geometries. All tasks take as input one additional �le
of 1 KByte and generate an output �le of 10 KBytes.
An application is composed of a U(2; 10) number of
Monte-Carlo simulations, with each simulation com-
posed of a U(20; 1000) number of tasks. Each task
requires a U(100; 300) number of seconds of compu-
tation on an unloaded base CPU. Finally, the size
in KBytes of the geometry �le associated with each
Monte-Carlo simulation is U(400; 100000), meaning
that those �les can reach the size of approximatively
95 MBytes. These distributions are representative of
what can be expected from real MCell applications. We
generated one-thousand applications following exactly
this method, and we also generated another thousand
by adding random �le/task dependencies. The idea is
to create some perturbation of the regular structure of
the �le/task dependency graph and investigate if such
a perturbation has an impact on the relative perfor-
mances of the di�erent task/host selection heuristics.
The perturbation consisted in adding a number of ran-
dom additional dependencies on the order of one �fth of
the total number of tasks. Even though such perturba-
tions take us away from typical MCell applications, it
can be interesting to see how they a�ect the heuristics.

The results are summarized in Table 4.3 for both
standard applications and applications with �le/task
dependencies perturbation. For each scheduling heuris-
tic (including a self-scheduled workqueue [12]) and for
each type of application, the table contains three per-
formance values. The results are computed over 1000
random Grid/application pairs. We use the geomet-
ric mean of the makespans rather than the arithmetic
mean to account for the fact that, depending on the
Grid and the application, makespans in the sample



Table 1. Results for Random Grid/Application pairs

No Perturbation Perturbation
Scheduling Geometric Av. Degradation Average Geometric Av. Degradation Average

Mean (sec) from Best (%) Rank Mean (sec) from Best (%) Rank

Max-min 2390 17.3 3.1 2549 18.9 3.1
Min-min 2452 21.2 3.0 2619 23.2 3.0
Su�erage 2329 14.1 2.8 2505 16.7 2.9
XSu�erage 2174 6.2 1.8 2316 7.9 1.8
Workqueue 2850 42.2 4.3 3091 48.1 4.2

space can be of di�erent orders of magnitude (one large
makespan could easily dominate the arithmetic mean).

The second performance value is the "average degra-
dation from the best" which is a measure of how far a
heuristic is from the best heuristic on average. For each
heuristic, it is computed as the arithmetic mean over all
Grid/application pairs of the relative di�erence of the
makespans for that heuristic and for the best heuristic.
The smaller that value, the closer the heuristic to being
the best one on average.

The third performance value is the "average rank" of
a heuristic over all Grid/application pairs. The average
rank is computed as the arithmetic mean of the rank (1
to 5), where the heuristic leading to the best makespan
is of rank 1 and the one leading to the worst makespan
is of rank 5.

These three di�erent performance values all have
slightly di�erent interpretations and make it possible
to gain a clear understanding of how the heuristics
compare with one another. For instance, it could be
that heuristic 1 is the best one in most cases, and that
heuristic 2 is the second-best one in most cases as well.
In that case, their average ranks will be close to 1 and 2
respectively. This might lead us to think that heuristic
one is preferable. However, it is possible that the av-
erage degradation from best are respectively 20% and
5%. For instance, it can be that when heuristic 1 is not
the best one it is far worse than the best one, whereas
heuristic 2 might not be best often, but is never far
behind the best one in practice. In that case, we would
probably conclude that heuristic 2 is preferable.

The main message from Table 4.3 is that XSu�er-
age is the best heuristic as it leads to the best geo-
metric mean, average degradation from the best, and
average rank for perturbed and non-perturbed appli-
cations. Its average degradation from the best is at
least twice smaller than that of any other heuristics for
standard applications and applications with perturba-
tion. Its average rank is better than any other by 1
unit. Note that the workqueue, in these experiments,

is the least eÆcient scheduling algorithm as its average
rank is larger than 4 units. Max-min and Su�erage are
comparable with a slight advantage to Max-min, and
Min-min seems less eÆcient.

Note that all the results in Table 4.3 are averages
over a large number of experiments. In the following
sections we will see cases where Min-min leads to good
makespans when compared to Max-min and Su�erage.
We claim that the experimental results presented in
this section are suÆcient to show that XSu�erage is
the one of the four heuristics that leads to best sched-
ules for parameter sweep applications, given the models
described in Section 2.

4.3.2. Varying Shared File Sizes

Figure 5(a) show simulation results for the following
application and Grid. The application consists of 1600
tasks, where each task takes as input a 10K un-shared
�le and one of eight identical shared �les, each shared
by 200 tasks. All tasks are identical in terms of compu-
tational cost (200 seconds on an unloaded base CPU)
and produce a 10K output �le. This application set-
ting is comparable to what some of our target param-
eter sweep applications require. We simulate a Grid
such as one that could realistically be used by a user
based at UCSD. That Grid contains 5 clusters contain-
ing respectively 6, 6, 8, 20, and 20 hosts. The perfor-
mance characteristics of the hosts are based on actual
CPU traces obtained via the Network Weather Service.
The network links are also modeled from NWS traces
obtained over the course of a day between a worksta-
tion at UCSD and several remote sites accessible by
commercial Internet links or the vBNS. Bandwidths
on these links varies from as little as 6 KBytes/sec
to 600 KBytes/sec depending on the link and on the
time of the day. In terms of bandwidth averages, one
can classify two of the links as fast (500 KBytes/sec),
three of the links as moderate (between 100 and 200
KBytes/sec), and one as slow (50 KBytes/sec). One
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Figure 5. Makespan vs. shared file size for
different heuristics

of the two large 20-host clusters is accessible via a fast
link. For large shared �le sizes on the graphs, the av-
erage ratio between �le transfer time and computation
time for one task is about 3 on a fast link and 30 on
a slow link. For the smallest shared �le sizes in our
study, that ratio is about 0.2 on a fast link and 2 on
a slow link. For these experiments, the interval be-
tween scheduling events was always 500 seconds, and
we assumed 100% accurate performance estimations.

The graph in Figure 5 plots makespans vs. shared
�le shared �le sizes between 10 and 150 MBytes for
the four heuristics and the self-scheduled workqueue.
For very small shared �le sizes (up to 100 KBytes, not
plotted on the graph), the workqueue leads to better
makespans than other heuristics when �les are so small
that the e�ect of �le sharing becomes negligible. How-
ever, the workqueue quickly becomes ineÆcient when
shared �le size increases. The other heuristics perform
similarly for small shared �le sizes but one can see on
the graph that XSu�erage performs at least about 20%
better than Min-min and 40% better than Max-min
and Su�erage for a �le size of 150 MBytes. We obtained
similar results with di�erent Grid con�gurations. We
also performed experiments with much larger �le sizes.
Even though those experiments are not very realistic
given the current networking capabilities they provide
information about what happens when �le re-use is the
only constraint for achieving good scheduling. The re-

sults showed that XSu�erage constantly outperforms
all other heuristics by at least 50%. These results show
that XSu�erage does a better job at capturing and tak-
ing advantage of �le sharing patterns to maximize �le
re-use.

5. Adaptive Scheduling

5.1. Quality of Information

A new avenue of research that we are beginning to
explore is the study of Quality of Information (QoI) on
scheduling, that is the impact of the performance es-
timation accuracy and other qualitative attributes on
di�erent scheduling strategies . We expect di�erent
heuristics to react di�erently to degrading levels of ac-
curacy and that strategies that do not depend on per-
formance estimation and forecast (e.g. self-scheduled
ones [16]) will be more performance-eÆcient when QoI
is low. Low QoI can also be accounted for in adap-
tive scheduling algorithms such as schedule(). The
following section presents our �rst simulation results
for di�erent levels of QoI and for increasingly adaptive
versions of schedule().

Our initial model for simulating di�erent levels of
QoI is simple. Our simulator allows us to obtain 100%
accurate estimates for all �le transfer or computational
times and we add random noise to those estimates to
simulate inaccurate performance estimates. For each
estimate used by the scheduling algorithm we intro-
duce a percentage error that is uniformly distributed
on the interval [�p;+p] where p is a value between
0% and 100%. Perfectly accurate QoI corresponds to
p = 0, whereas p = 10 means that every 100% accurate
estimate will be randomly increased or decreased by up
to 10%.

This model is suÆcient for obtaining initial results
concerning the impact of QoI on the scheduling of pa-
rameter sweep applications, however it makes two as-
sumptions that are not realistic for real forecasting ser-
vices that will be deployed in Computational Grids.
First, it assumes that QoI behavior is the same for
all estimates (for �le transfer times and computational
times) and for all resources. This is clearly not the case
as network behavior is signi�cantly di�erent from CPU
behavior for performance prediction purposes [32], and
some resources will generally be more predictable than
others on a regular basis. Second, it assumes that
QoI behavior does not depend on whether a forecast

The term "quality of Information is used to describe qual-
itative aspects of performance predictions in the Performance
Prediction Engineering Project [14].



is needed for an event in the short-term or in the long-
term. For instance, our model uses the same error
model for predicting a �le transfer time if the transfer
is initiated in the next minute or in an hour. A more
realistic model should probably try to capture some
decay of the QoI as predictions become more and more
long-term. Note that this issue becomes less critical
for high scheduling event frequencies. Future work will
aim at providing a more realistic model of QoI based
on experiments with deployed Grid services, such as
the Network Weather Service [31], and with a variety
of Grid resources.

5.2. Simulation Results

Figure 6 shows simulation results for four di�erent
scheduling event frequencies and decreasing QoI levels.

We use the same simulated Grid as the one used
in Section 4.3.2 and the application is modeled after
an MCell computation that performs eight moderate-
size Monte-Carlo simulations (100 tasks each) for eight
di�erent geometry con�gurations of a neuro-muscular
junction. Geometry �les are on the order of 40 MBytes,
meaning that network transfer times for those �les take
on average 80 seconds on a fast link and about 800
seconds on a slow link. The average task computational
time over all hosts is about 110 seconds, can be as fast
at 90 seconds, and as slow as 350 seconds depending
on the host and on its load when the task is running
(as simulated by an o�set in an NWS CPU load trace).

All data points in the graphs of Figure 6 are com-
puted as the average makespan over 50 simulated runs.
This is necessary since we introduce random noise to
performance estimates in order to simulate di�erent
levels of QoI. All graphs plot average makespans vs.
values of p (de�ned in Section 5.1, for the heuristics
presented in Section 4.1 as well as for a self-scheduled
workqueue algorithm. Since the workqueue does not
make use of performance estimates it is not sensitive
to QoI. It is shown as a horizontal solid line on the
four graphs (with a makespan of 1730 seconds). The
variances associated with the 50 samples for each data
point were small for all heuristics: coeÆcients of varia-
tions were on the order of 5%.

Graph 6(a) plots results when there is only one
initial scheduling event, meaning that the scheduling
algorithm is not adaptive. All heuristics but Max-
min lead to better makespans than the workqueue for
perfect QoI (p = 0), but their performance degrades
very rapidly when p increases. Max-min leads to the
worst makespans, but over all, all heuristics lead to
makespans at least 40% larger than the workqueue
when p is greater than 50. This result is not surprising

as the cumulative errors of performance estimates im-
pact the computations of the various MCTs required
by the heuristics.

Graph 6(b) shows the results when there is a
scheduling event every 500 seconds, or 3 times dur-
ing each run of the application in this case. One can
notice that some heuristics outperform the workqueue
for values of p up to 20. Max-min and Su�erage exhibit
less performance as soon as the QoI is not perfect.

Graph 6(c) shows the results when there is a schedul-
ing event every 250 seconds, or between 5 and 8 times
for each run depending on the heuristic being used.
The e�ect observed on graph 6(b) is more pronounced
in that heuristics become more tolerant to low QoI
thanks to increased adaptivity, even though Max-min
still leads to large makespans. Su�erage outperforms
the workqueue for values of p lower than 30, whereas
Min-min and XSu�erage lead to better makespan than
the workqueue for all values of p. For perfect accuracy,
XSu�erage outperforms workqueue by as much as 25%.

Finally, Graph 6(d) shows results for scheduling
events every 125 seconds, or between 11 and 14 times
per run. Su�erage now outperforms the workqueue for
p up to 80, whereas Min-min and XSu�erage keep bene-
�ting from increased adaptivity. The results show little
improvements for higher scheduling frequencies. This
is due to the granularity of the application: since tasks
take at least 90 seconds, little can be gained by calling
schedule() more than once every 125 seconds. For
\good" QoI (p < 5%), XSu�erage always outperforms
Min-min.

Note that these results are preliminary and that it
is diÆcult to use them to rank the di�erent heuristics
according to their respective robustness to inaccurate
performance predictions. It will be necessary to per-
form experiments for large numbers of di�erent Grid
con�gurations and application structures as was done
in Section 4.3.1. A future paper will contain results
from such experiments as well as a more in-depth study
of QoI issues.

Note also that in these experiments we assume that
the QoI does not depend on the scheduling event fre-
quency (see the discussion in Section 5.1). However,
a high scheduling frequency implies that the heuristics
do not use long-term predictions (see the discussion
on step (5) in Section 3.2). Assuming that short-term
predictions are typically more accurate than long-term
predictions, higher scheduling frequencies lead to im-
proved QoI. On Graph 6(d) we show simulation results
for values of p up to 100, but we expect that in reason-
ably stable Grid environments with appropriate fore-
casting services, the performance estimation error will
not be as large as +/- 100% for short-term predictions.
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Figure 6. Simulation results for various levels of QoI and adaptivity



The left part of the graph should be more representa-
tive of what we can expect for real systems.

Finally, the scheduling event frequency impacts the
performance of the adaptive algorithm even for perfect
QoI. For instance, XSu�erage has an average makespan
around 1550 seconds for p = 0 and scheduling events
every 500 seconds, whereas that average makespan be-
comes lower than 1400 seconds for larger frequencies.
All heuristics but Max-min achieve better makespan
for higher frequencies in the case of perfect QoI. This
is rather counter-intuitive as one would expect that
perfect QoI would not mandate any adaptivity at all.
The fact is that applying those heuristics on small
sets of tasks leads to better scheduling decisions and
shorter makespans. As tasks complete, successive calls
to schedule() apply the heuristics to the decreasing
sets of tasks, leading to better overall makespans. This
suggests that calling the scheduling algorithm repeat-
edly is a good idea for Su�erage, Min-min, and XSuf-
ferage, even if the environment is very predictable.

6. Summary of Simulation Results

The simulation results in Section 4.3.1 showed that
XSu�erage is on average a better heuristic than the
traditional Max-min, Min-min, Su�erage, and self-
scheduled workqueue for scheduling parameter sweep
applications such as MCell on Computational Grids,
provided the models of Section 2 hold. We believe that
Xsu�erage leads to better results because it better cap-
tures the �le/task dependencies of the application and
leads to improved �le re-use. This claim is supported
by the results in Section 4.3.2. Indeed, all experiments
we have conducted with very large shared �les seem
to indicate that XSu�erage leads to better makespans
than its contenders. Finally, the preliminary study
of Quality of Information and adaptivity in Section 5
showed that all heuristics can bene�t from increased
adaptivity and from increased QoI. The results seem
to indicate that XSu�erage leads to very good results
for good QoI and compares well with other heuristics
for poor QoI.

It is always diÆcult to make general statements
about the relative eÆciency of scheduling algorithms
since the space of possible Grid con�gurations and ap-
plication structures is very large. The solution is to
sample both the Grid and the application space as
much as possible as was done in Section 4.3.1. Future
work will contain such sampling for experiments similar
to the ones presented in Section 4.3.2 and 5 in order to
make the results concerning shared �le sizes and QoI
more general. Ironically, performing such large-scale
simulations in the Grid/application space is itself a pa-

rameter sweep application and we will probably use the
PST software to distribute it on a real computational
Grid.

7. Related Work

A large number of research papers address the ques-
tion of mapping sets of tasks onto sets of processors in
a view to minimizing overall execution time. Many of
these papers address the case where tasks are indepen-
dent [17, 12, 16, 20]. Scheduling heuristics found in [20]
were adapted to our framework as discussed in Sec-
tion 4. All these papers make simplifying assumptions
for task execution times (constant, following a trun-
cated Gaussian distribution, etc.) and none of them
take into account data storage issues.

The work described in [2] focuses on scheduling ap-
plications structured as DAGs on heterogeneous sets
of processors and uses heuristics that are related to
Max-min and Min-min for Level-by-Level scheduling
of the graphs. However, special attention is paid to
data storage issues which makes that work related to
the research presented in this paper. A major di�er-
ence between our work and the development in [2] is
that the latter assumes constant perfectly predictable
performance characteristics for resources as should be
available in advanced reservation QoS environments.
Also, the di�erent application structures (Parameter
Sweep vs. DAGs) lead to many di�erences between
the models in this paper and in [2]. For instance, data
repositories are located anywhere on the network (as
opposed within a cluster) and datasets are pre-staged
to these repositories. Finally, [4] contains a survey
that encompasses several heuristics in addition to the
ones described in [20]. We will consider these heuris-
tics in our future work. This work contrasts to others
in that we: (i) take into account application data stor-
age; (ii) model shared, heterogeneous computational
and network resources with realistic dynamic perfor-
mance characteristics; (iii) study the impact of the ac-
curacy of performance prediction; (iv) introduce a new
heuristic for scheduling parameter sweep applications
(XSu�erage).

This work is also related to our work on an AppLeS
Parameter Sweep Template (PST) in that the results
in this paper provide a good justi�cation that XSu�er-
age should be implemented as part of the PST sched-
uler. PST will provide with a practical way to deploy
and schedule parameter sweep on the computational
Grid using available software infrastructures and will
be described in a future paper. PST itself is related
to the Nimrod project [1]. Nimrod targets parameter
sweep applications but its scheduling approach is dif-



ferent from ours as it is based on deadlines and on a
Grid economy model. Also, to the best of our knowl-
edge, Nimrod does not take into account dynamic Grid
conditions or �le locality constraints for scheduling. In
fact, the work in this paper and our work on the PST
software should be applicable to Nimrod and one can
envision an implementation of PST as a Nimrod mod-
ule.

8. Conclusion and Future Work

In this paper we have proposed an adaptive schedul-
ing algorithm for parameter sweep applications in Grid
environments. In particular, we address the case of
applications where tasks can share input �les (e.g.
MCell [29]) and the case of non-dedicated Computa-
tional Grids that span non-dedicated wide-area net-
works. After precisely de�ning our application and
Grid model, we adapted three standard heuristics for
performing task/host assignment (Max-min, Min-min,
Su�erage) and proposed an extension of the Su�erage
heuristic, XSu�erage. We also introduced the notion
of Quality of Information (QoI) to account for inac-
curacies in performance predictions. We use simula-
tion to compare the four heuristics and a self-scheduled
workqueue algorithm in multiple settings with vari-
ous shared �les sizes, levels of QoI, application struc-
tures, Grid topologies and resources. The simulation
results demonstrated that: (i) XSu�erage leads to bet-
ter schedules on average by quite a large margin; (ii) In-
creased adaptivity bene�ts all four heuristics even for
perfect QoI; (iii) XSu�erage leads to better schedules
for larger shared �le sizes; (iv) XSu�erage is as tolerant
as the other heuristics to poor QoI and more eÆcient
for good QoI.

Future work will provide improvements to our mod-
els such as more realistic network and storage models
(encompassing shared-storage and link contention, and
limited storage space), and alternate application usage
scenarios. We will also study the concept of QoI fur-
ther by investigating realistic QoI models and perform-
ing more QoI-related experiments with our simulator.
New heuristics such as the ones found in [4, 21] will
considered for implementing step (5) of our algorithm.
As discussed in Section 3.2, all steps of the algorithm
can lead to new research in di�erent directions (per-
formance prediction and forecasting, task-space reduc-
tion, trade-o�s between schedule disruption vs. maxi-
mum resource utilization). Also, the algorithm can be
adapted to provide ways to perform adaptive schedul-
ing for other classes of applications by using di�erent
heuristics in step (5). Finally, we will incorporate the
results here, as well as many of these future improve-

ments, into a practical programming environment and
adaptive scheduler for parameter sweep applications on
the Grid, an AppLeS Parameter Sweep Template. We
believe that such software will provide a useful �rst step
in achieving performance and programmability for ap-
plications in Grid environments.
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Appendix A:
Task/host Selection Heuristics

Let Hj;k denote the kth host within the jth cluster
and C(Ti; Hj;k) the estimated completion time of task
Ti on host Hj;k. Let us de�ne the argmin operator:

De�nition: Given a function f from IRn into IR,

f(argmin
x2IRnf(x)) = min

x2IRn f(x):

The operator denotes one of the possible vectors that
achieves the minimum of the function f . The way ties
are broken is left the implementation and in this work
they are broken randomly. An argmax operator can
be de�ned in a similar fashion. Assuming a task set T ,
we can now describe each heuristic as follows:

Min-min

while (T 6= ?)
foreach (Ti 2 T )

(c
(1)
i ; h

(1)
i ) = argminj;k(C(Ti; Hj;k))

end foreach
s = argmini(C(Ti; Hc

(1)
i

;h
(1)
i

))

assign Ts to H
c
(1)
s ;h

(1)
s

T = T � fTsg
end while

Max-min

while (T 6= ?)
foreach (Ti 2 T )

(c
(1)
i ; h

(1)
i ) = argminj;k(C(Ti; Hj;k))

end foreach
s = argmaxi(C(Ti; Hc

(1)
i

;h
(1)
i

))

assign Ts to H
c
(1)
s ;h

(1)
s

T = T � fTsg
end while



Su�erage

while (T 6= ?)
foreach (Ti 2 T )

(c
(1)
i ; h

(1)
i ) = argminj;k(C(Ti; Hj;k))

(c
(2)
i ; h

(2)
i ) = argmin

j 6=c
(1)
i

;k 6=h
(1)
i

(C(Ti; Hj;k))

suf i = C(Ti; Hc
(2)
i

;h
(2)
i

)� C(Ti; Hc
(1)
i

;h
(1)
i

)

end foreach
s = argmaxi(suf i)
assign Ts to H

c
(1)
s ;h

(1)
s

T = T � fTsg
end while

XSu�erage

while (T 6= ?)
foreach (Ti 2 T )

foreach cluster j
hi;j = argmink(C(Ti; Hj;k))

end foreach

c
(1)
i = argminj(C(Ti; Hj;hi;j ))

c
(2)
i = argmin

j 6=c
(1)
i

(C(Ti; Hj;hi;j ))

suf i = C(Ti; Hc
(2)
i

;h
i;c

(2)
i

)� C(Ti; Hc
(1)
i

;h
i;c

(1)
i

)

end foreach
s = argmaxi(suf i)
assign Ts to H

c
(1)
i

;h
i;c

(1)
i

T = T � fTsg
end while
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